581 research outputs found

    Biohydrogen: A life cycle assessment and comparison with alternative low-carbon production routes in UK

    Get PDF
    This study focuses on the production of hydrogen from municipal solid waste (MSW) for applications in transportation. A life cycle assessment (LCA) was conducted on a semi-commercial advanced gasification process for Biohydrogen (Bio-H2) production from MSW to evaluate its environmental impact on five impact categories: Climate Change, Acidification, Eutrophication Fresh Water, Ecotoxicity Freshwater and Photochemical Ozone Formation (human health). The biogenic composition of waste and the effect of carbon sequestration were analysed for Bio-H2, uncovering a net-negative carbon process. The counterfactual case of MSW incineration further bolsters the carbon savings associated to Bio-H2. The production of Bio-H2 from waste is proven to be competitive against alternative hydrogen productions routes, namely blue hydrogen (Blue-H2) produced via steam methane reforming/autothermal reforming coupled with carbon capture and storage (CCS), and green hydrogen (Green-H2) from solar and offshore wind, with respect to climate change. These climate change advantages are shown to carry forward in the context of decarbonisation of electricity grid mix, as analysed by scenarios taken for 2030 and ‘net-zero’ 2050

    Sensitivity of Dynamic Methods for Damage Detection in Structural Concrete Bridges

    Get PDF
    A critical analysis of the available methods for the assessment of structural concrete bridges through the observation of their dynamic response is carried out. A mathematical model for the evaluation of the natural frequencies shift due to bridge damage is applied to the case of an existing reinforced concrete bridge. The numerical results, along with the general structure of the mathematical problem, allow discussing some limitation and drawbacks of the dynamic methods. Namely the need for a reference set of the bridges dynamic properties before the onset of damage and the effect of the ambient temperature variation may lead, in many cases, to unreliable estimates of the structural condition of the investigated bridges

    PP272—Migraine and parthenolide inhibition of transient receptor potential ankyrin 1

    Get PDF
    2013 e103 emerged as a major complication of bortezomib therapy, which usually appears in the first courses of therapy with a number of sensory and painful symptoms, including reduced threshold to mechanical and cold stimuli. No satisfactory explanation or effective treatment exists for bortezomib-evoked CIPN. Patients (or Materials) and Methods: In this study, we evaluated whether TRPA1 acted as a critical mediator of CIPN by bortezomib or oxaliplatin in a mouse model system. Results: Our data demonstrated that CIPN hypersensitivity phenotype that was stably established by bortezomib could be transiently reverted by systemic or local treatment with the TRPA1 antagonist HC-030031. A similar effect was produced by the oxidative stress scavenger α -lipoic acid. Notably, the CIPN phenotype was abolished completely in mice that were genetically deficient in TRPA1, highlighting its essential role. Administration of bortezomib or oxaliplatin, which also elicits TRPA1-dependent hypersensitivity, produced a rapid, transient increase in plasma of carboxy-methyllysine, a byproduct of oxidative stress. Short-term systemic treatment with either HC-030031 or α -lipoic acid could completely prevent hypersensitivity if administered before the cytotoxic drug. Conclusion: Our findings highlight a key role for early activation/ sensitization of TRPA1 by oxidative stress by-products in producing CIPN. Furthermore, they suggest prevention strategies for CIPN in patients through the use of early, short-term treatments with TRPA1 antagonists. Disclosure of Interest: None declared

    The monitoring program of grapevine phytoplasmas in Tuscany (Italy): Results of a four year survey

    Get PDF
    Quantitative PCR protocols for phytoplasma detection were used to monitor grapevine yellows (GY) in 373 vineyards located in nine Tuscan districts. Among more than 70,000 plants visually monitored, 1.867 plants were sampled and “flavescence dorée” phytoplasmas (FD) were detected in 122 plants and mainly identified as trains belonging to 16SrV-C subgroup. The “bois noir” (BN) phytoplasma was found in 734 samples, with prevalence of tufB type-b strains. The 2013–2015 monitoring program was strongly influenced by the first survey (2012) in which FD was found consistently in the North West (15 samples), whereas only a few cases were observed in the East territory (2 samples). Both areas were thoroughly monitored in the following years: few foci were found in the East (2 in 2014, 1 in 2015), while several infected areas were found in the North West (6, 10 and 22 foci in 2013, 2014 and 2015, respectively). Definitely, the novel FD foci detected in the survey (17, 6, 12 and 23 in each year of survey) and the widespread of BN, suggest a dangerous distribution of GY in Tuscan

    Co-gasification of beech-wood and polyethylene in a fluidized-bed reactor

    Get PDF
    The co-gasification of beech-wood and polyethylene has been investigated in a lab-scale fluidised-bed reactor in the presence of four different types of bed materials (silica sand, olivine, Na-Y zeolite and ZSM-5 zeolite). ZSM-5 zeolite is very effective as a catalytic bed material in fluidized-bed reactor for wood-only gasification and cogasification in terms of high hydrogen production and CGE. Na-Y zeolite is more effective compared with ZSM-5 zeolite in co-gasification of the beech-wood and polyethylene process. The catalytic activity in co-gasification of beech-wood and polyethylene can be ranked accordingly: Na-Y zeolite > ZSM-5 zeolite > olivine. In general, higher amounts of steam injected in the fluidized-bed reactor and more polyethylene would lead to higher hydrogen production in the co-gasification proces

    Exploring the Link between BMI and Aggressive Histopathological Subtypes in Differentiated Thyroid Carcinoma—Insights from a Multicentre Retrospective Study

    Get PDF
    Obesity’s role in thyroid cancer development is still debated, as well as its association with aggressive histopathological subtypes (AHSs). To clarify the link between Body Mass Index (BMI) and AHS of differentiated thyroid carcinoma (DTC), we evaluated patients who underwent thyroidectomy for DTC from 2020 to 2022 at four European referral centres for endocrine surgery. Based on BMI, patients were classified as normal-underweight, overweight, or obese. AHSs were defined according to 2022 WHO guidelines. Among 3868 patients included, 34.5% were overweight and 19.6% obese. Histological diagnoses were: 93.6% papillary (PTC), 4.8% follicular (FTC), and 1.6% Hürthle cell (HCC) thyroid carcinoma. Obese and overweight patients with PTC had a higher rate of AHSs (p = 0.03), bilateral, multifocal tumours (p = 0.014, 0.049), and larger nodal metastases (p = 0.017). In a multivariate analysis, BMI was an independent predictor of AHS of PTC, irrespective of gender (p = 0.028). In younger patients (<55 years old) with PTC > 1 cm, BMI predicted a higher ATA risk class (p = 0.036). Overweight and obese patients with FTC had larger tumours (p = 0.036). No difference was found in terms of AHS of FTC and HCC based on BMI category. Overweight and obese patients with PTC appear to be at an increased risk for AHS and aggressive clinico-pathological characteristics
    corecore