8 research outputs found

    Die Rolle der Serin/Threonin Kinase Cot in Proliferation, Differenzierung und Apoptose

    Get PDF
    Mitogene Signale werden von der Plasmamembran zum Zellkern über komplexe z.T. miteinander verknüpfte Signaltransduktionskaskaden übertragen. In der vorliegenden Arbeit wurde das Proto-Onkoprotein Cot als eine neue Komponente von mitogenen Signalkaskaden identifiziert, die die Fähigkeit hat, sowohl die klassische mitogene Kaskade als auch den JNK-Streß-Kinaseweg zu aktivieren. Wildtyp und aktiviertes Cot phosphorylieren und aktivieren MEK-1 und SEK-1 in vitro. Expression von onkogenem Cot in 293-, NIH3T3- und PC12- Zellen führt auch in vivo zu einer Phosphorylierung der endogenen Proteine c-Jun und ERK-1/2. In Bezug auf diese Fähigkeit, zwei unterschiedliche Signalkaskaden zu stimulieren, wurden die biologischen Effekte von Cot auf verschiedene Zelltypen, sowie seine tumorauslösende Wirkung in der Maus untersucht. Expression von onkogenem c-Raf-1 oder v-Mos führt zu einer Differenzierung in PC12-Zellen. Cot induziert ebenfalls Neuritenbildung in diesen Zellen. Ähnlich wie v-raf hat onkogenes cot eine antiapoptotische Wirkung auf 32D-Zellen nach IL-3-Entzug. In neugeborenen NSF/N-Mäusen induzierte retroviral-exprimiertes onkogenes Cot nach einer Latenzzeit von 7-10 Wochen B-Zell-Lymphome vergleichbar mit v-raf/v-myc induzierten Tumoren [191]. Diese Daten stimmen mit der Rolle von Cot in der klassischen mitogenen Kaskade überein und lassen darauf schließen, daß die simultane Aktivierung von JNK in diesem Zusammenhang keinen antagonistischen Effekt hat. Aktives NF-kB reguliert die Transkription einer Reihe von Ziel-Genen, die in verschiedenen zellulären Funktionen involviert sind. Viele Stimuli, Mitglieder der mitogenen Kaskade eingeschlossen, aktivieren NF-kB, so z.B. auch c-Raf-1, das mit Cot überlappende Effekte auf Apoptose-Suppression, Transformation und Differenzierung aufweist und auf der gleichen Ebene zu funktionieren scheint. In der vorliegenden Arbeit wurde gezeigt, daß Cot NF-kB aktiviert, dieses aber indirekt durch einen autokrinen Loop geschieht, der den EGFR und die Streß-Kinasekaskade involviert. Mit c-Raf-1 konnten in unserem Labor bereits ähnliche Ergebnisse gezeigt werden [234]. Eine direkte Interaktion zwischen Cot und der NF-kB-Aktivierung konnte durch die Identifikation von p105, einem Vorläuferprotein und Regulator von NF-kB, als Cot-Interaktionspartner in einem Two-Hybrid Screen gefunden werden. Die Tatsache, daß Cot mit IKKa und IkBa, beides NF-kB-Regulatoren, copräzipitiert, deutet ebenfalls auf einen direkten Mechanismus der Cot-abhängigen NF-kB-Aktivierung hin. Dieser Prozeß wird hauptsächlich durch den Transport der Komponenten des NF-kB-Transkriptionsfaktorkomplexes und seiner Regulatoren zwischen Zytosol und Nukleus kontrolliert. Das kleine G-Protein Ran spielt eine kritische Rolle in derartigen Transportprozessen und wurde interessanterweise ebenfalls in einem Two-Hybrid Screen als neuer Interaktionspartner von Cot identifiziert. Durch Coimmunopräzipitationsexperimente konnte dieses Ergebnis bestätigt werden. Diese Daten weisen auf einen neuen Mechanismus der NF-kB-Regulation durch Cot hin und geben neue Ansätze, die komplexen Funktionen von Cot in der Zelle zu diskutieren und weiter zu analysieren.Mitogenic signals initiated at the plasma membrane are transmitted to the nucleus through complex and partially connected signal transduction cascades. The proto oncoprotein Cot was identified in this thesis as a new component of mitogenic signalling cascades, which activates both, the classic cytoplasmic cascade and the JNK stress pathway. Wildtype and activated Cot phosphorylate and activate MEK-1 and SEK-1 in vitro. Moreover, expression of oncogenic Cot in 293, NIH3T3 and PC12 cells leads to phosphorylation of endogenous c-Jun and ERK 1/2 in vivo. To test the relevance of the ability of Cot to stimulate two different signalling cascades we have examined the effects of Cot on different cell types as well as on tumor induction in mice. Expression of oncogenic c-Raf-1 or v-Mos leads to differentiation of PC12 cells. Cot induces as well neurite outgrowth in these cells. Furthermore, oncogenic Cot shows similar to v-raf an antiapoptotic effect on 32D cells after IL-3 deprivation. Retrovirally expressed oncogenic Cot induces B-cell lymphomas in newborn NSF/N mice after a latency of 7-10 weeks similiar to v-raf/v-myc [191]. This data are consistent with the role of Cot in the classic mitogenic cascade and suggest that the simultaneously activated JNK stress pathway has no antagonistic effects in this context. Active NF-kB regulates transcription of a variety of target genes involved in distinct cellular functions. Many stimuli activate NF-kB including members of the mitogenic cascade, e.g. c-Raf-1, which seems to function on the same level as oncogenic Cot and has partially overlapping effects on apoptosis suppression, transformation and differentiation. The work presented in this thesis demonstrates that Cot activates NF-kB and that this activation occurs indirectly via an autocrine loop which involves the EGF-receptor and also results in the activation of the stresskinase pathway. Similar results have been obtained in our lab in the past with Raf-1 [234]. An additional more direct pathway from Cot to NF-kB activation was demonstrated by our identification of p105, a precursor protein and regulator of NF-kB, as Cot interaction partner in a Two-hybrid screen. Furthermore, Cot coprecipitates with IKKa and IkBa, which are both regulators of NF-kB. The process of NF-kB activation is mainly controlled by the shuttling of components of the active transcription factor complex as well as of its regulators between cytosol and the nucleus. It is assumed that the small GTPase Ran plays a crucial role in these transports. Interestingly, we observed in a Two-hybrid screen that Ran is interacting with Cot which also was confirmed by coimmunoprecipitation experiments. These results point to a new mechanism of NF-kB regulation by activated Cot and gives new starting points to analyse the complex functions of Cot in the cell

    PAK5 Kinase Is an Inhibitor of MARK/Par-1, Which Leads to Stable Microtubules and Dynamic Actin

    No full text
    MARK/Par-1 is a kinase involved in development of embryonic polarity. In neurons, MARK phosphorylates tau protein and causes its detachment from microtubules, the tracks of axonal transport. Because the target sites of MARK on tau occur at an early stage of Alzheimer neurodegeneration, we searched for interaction partners of MARK. Here we report that MARK2 is negatively regulated by PAK5, a neuronal member of the p21-activated kinase family. PAK5 suppresses the activity of MARK2 toward its target, tau protein. The inhibition requires the binding between the PAK5 and MARK2 catalytic domains, but does not require phosphorylation. In transfected Chinese hamster ovary (CHO) cells both kinases show a vesicular distribution with partial colocalization on endosomes containing AP-1/2. Although MARK2 transfected alone destabilizes microtubules and stabilizes actin stress fibers, PAK5 keeps microtubules stable through the down-regulation of MARK2 but destabilizes the F-actin network so that stress fibers and focal adhesions disappear and cells develop filopodia. The results point to an inverse relationship between actin- and microtubule-related signaling by the PAK5 and MARK2 pathways that affect both cytoskeletal networks

    Spred1 and TESK1—Two New Interaction Partners of the Kinase MARKK/TAO1 That Link the Microtubule and Actin Cytoskeleton

    No full text
    The signaling from MARKK/TAO1 to the MAP/microtubule affinity-regulating kinase MARK/Par1 to phosphorylated microtubule associated proteins (MAPs) renders microtubules dynamic and plays a role in neurite outgrowth or polarity development. Because hyperphosphorylation of Tau at MARK target sites is a hallmark of Alzheimer neurodegeneration, we searched for upstream regulators by the yeast two-hybrid approach and identified two new interaction partners of MARKK, the regulatory Sprouty-related protein with EVH-1 domain1 (Spred1) and the testis-specific protein kinase (TESK1). Spred1-MARKK binding has no effect on the activity of MARKK; therefore, it does not change microtubule (MT) stability. Spred1-TESK1 binding causes inhibition of TESK1. Because TESK1 can phosphorylate cofilin and thus stabilizes F-actin stress fibers, the inhibition of TESK1 by Spred1 makes F-actin fibers dynamic. A third element in this interaction triangle is that TESK1 binds to and inhibits MARKK. Thus, in Chinese hamster ovary (CHO) cells the elevation of MARKK results in MT disruption (via activation of MARK/Par1 and phosphorylation of MAPs), but this can be blocked by TESK1. Similarly, enhanced TESK1 activity results in increased stress fibers (via phospho-cofilin), but this can be blocked by elevating Spred1. Thus, the three-way interaction between Spred1, MARKK, and TESK1 represents a pathway that links regulation of both the microtubule- and F-actin cytoskeleton
    corecore