26 research outputs found

    Klp67A destabilises pre-anaphase microtubules but subsequently is required to stabilise the central spindle

    Get PDF
    Klp67A is a member of the Kip3 subfamily of microtubule destabilising kinesins, the loss of which results in abnormally long and stable pre-anaphase microtubules. Here we examine its role during cytokinesis in Drosophila primary spermatocytes that require the coordinated interaction of an interior and peripheral set of central spindle microtubules. In mutants anaphase B spindles elongated with normal kinetics but bent towards the cortex. Both peripheral and interior spindle microtubules then formed diminished bundles of abnormally positioned central spindle microtubules associated with the pavarotti-KLP and KLP3A motor proteins. The minus ends of these were poorly aligned as revealed by Asp protein localisation. Furrows always initiated at the sites of central spindle bundles but could be unilateral or nonequatorially positioned. Ectopic furrows were stimulated by the interior central spindle and formed only after this structure buckled and contacted the cortex. Furrows often halted and regressed as they could not be sustained by the central spindles that became increasing unstable over time and often completely degraded. Consistent with this, actin and anillin failed to form homogenous bands. Thus, the Klp67A microtubule catastrophe factor is required for cytokinesis by regulating both the formation and stability of the central spindle

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Klp67A destabilises pre-anaphase microtubules but subsequently is required to stabilise the central spindle

    No full text
    Klp67A is a member of the Kip3 subfamily of microtubule destabilising kinesins, the loss of which results in abnormally long and stable pre-anaphase microtubules. Here we examine its role during cytokinesis in Drosophila primary spermatocytes that require the coordinated interaction of an interior and peripheral set of central spindle microtubules. In mutants anaphase B spindles elongated with normal kinetics but bent towards the cortex. Both peripheral and interior spindle microtubules then formed diminished bundles of abnormally positioned central spindle microtubules associated with the pavarotti-KLP and KLP3A motor proteins. The minus ends of these were poorly aligned as revealed by Asp protein localisation. Furrows always initiated at the sites of central spindle bundles but could be unilateral or nonequatorially positioned. Ectopic furrows were stimulated by the interior central spindle and formed only after this structure buckled and contacted the cortex. Furrows often halted and regressed as they could not be sustained by the central spindles that became increasing unstable over time and often completely degraded. Consistent with this, actin and anillin failed to form homogenous bands. Thus, the Klp67A microtubule catastrophe factor is required for cytokinesis by regulating both the formation and stability of the central spindle

    A case of restless leg syndrome in a family with LRRK2 gene mutation.

    No full text
    LRRK2 gene mutations (PARK8) are a common cause of genetic Parkinson disease (PD). G2019S, the most frequent mutation, is responsible for both familial and sporadic cases of PD. The clinical picture is usually indistinguishable from that observed in idiopathic PD; however, a wide range of clinical presentations and pathological findings has been described. Restless leg syndrome (RLS) is a disabling sleep-related sensorimotor disorder whose pathogenesis is likely related to dopaminergic dysfunction. We report a 77-year-old woman with RLS and familial history of parkinsonism. The father, one sister, two cousins and one uncle were affected by PD. The proband and her sister were analyzed for mutations in LRRK2 gene and resulted to carry one heterozygous G2019S mutation in LRRK2 gene. The association between RLS and LRRK2 gene mutation may be casual, but it can hypothesized that RLS is a possible phenotypic presentation in PARK8
    corecore