310 research outputs found

    Occupational exposure to inhaled nanoparticles: Are young workers being left in the dust?

    Get PDF
    Occupational exposure to inhaled nanoparticles (NPs) represents a significant concern for worker health. Adolescent workers may face unique risks for exposure and resulting health effects when compared with adult workers. This manuscript discusses key differences in risks for occupational exposures to inhaled NPs and resulting health effects between young workers and adult workers via an examination of both physiological and occupational setting factors. Previous studies document how adolescents often face distinct and unique exposure scenarios to occupational hazards when compared to adults. Moreover, they also face different and unpredictable health effects because biological functions such as detoxification pathways and neurological mechanisms are still developing well into late adolescence. Early exposure also increases the chances of developing long-latency disease earlier in life. Taken together, adolescents' rapid growth and development encompasses highly dynamic and complex processes. An aggravating factor is that these processes do not necessarily fall in line with legal classifications of adulthood, nor with occupational exposure limits created for adult workers. The differences in exposures and health consequences from NPs on young workers are insufficiently understood. Research is needed to better understand what adolescent-specific mitigation strategies may be most suitable to address these risk factors

    Extension of Yeast Chronological Lifespan by Methylamine

    Get PDF
    Background: Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth. Methodology/Principal Findings: The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase. Conclusion/Significance: We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.

    DAF-2/Insulin-Like Signaling in C. elegans Modifies Effects of Dietary Restriction and Nutrient Stress on Aging, Stress and Growth

    Get PDF
    Dietary restriction (DR) and reduced insulin/IGF-I-like signaling (IIS) are two regimens that promote longevity in a variety of organisms. Genetic analysis in C. elegans nematodes has shown that DR and IIS couple to distinct cellular signaling pathways. However, it is not known whether these pathways ultimately converge on overlapping or distinct targets to extend lifespan.We investigated this question by examining additional effects of DR in wildtype animals and in daf-2 mutants with either moderate or severe IIS deficits. Surprisingly, DR and IIS had opposing effects on these physiological processes. First, DR induced a stress-related change in intestinal vesicle trafficking, termed the FIRE response, which was suppressed in daf-2 mutants. Second, DR did not strongly affect expression of a daf-2- and stress-responsive transcriptional reporter. Finally, DR-related growth impairment was suppressed in daf-2 mutants.These findings reveal that an important biological function of DAF-2/IIS is to enhance growth and survival under nutrient-limited conditions. However, we also discovered that levels of DAF-2 pathway activity modified the effects of DR on longevity. Thus, while DR and IIS clearly affect lifespan through independent targets, there may also be some prolongevity targets that are convergently regulated by these pathways

    Ill or just old? Towards a conceptual framework of the relation between ageing and disease

    Get PDF
    BACKGROUND: Is this person ill or just old? This question reflects the pondering mind of a doctor while interpreting the complaints of an elderly person who seeks his help. Many doctors think that ageing is a non-disease. Accordingly, various attempts have been undertaken to separate pathological ageing from normal ageing. However, the existence of a normal ageing process distinct from the pathological processes causing disease later in life can be questioned. DISCUSSION: Ageing is the accumulation of damage to somatic cells, leading to cellular dysfunction, and culminates in organ dysfunction and an increased vulnerability to death. Analogously, chronic diseases initiate early in life and their development is slow before they become clinically apparent and culminate in disability or death. The definition of disease is also subject to current opinions and scientific understanding and usually, it is an act of individual creativity when physical changes are recognised as symptoms of a new disease. New diseases, however, are only rarely really new. Most new diseases have gone undiagnosed because their signs and symptoms escaped recognition or were interpreted otherwise. Many physical changes in the elderly that are not yet recognised as a disease are thus ascribed to normal ageing. Therefore, the distinction between normal ageing and disease late in life seems in large part arbitrary. SUMMARY: We think that normal ageing cannot be separated from pathological processes causing disease later in life, and we propose that the distinction is avoided

    Genome-Wide Fitness and Expression Profiling Implicate Mga2 in Adaptation to Hydrogen Peroxide

    Get PDF
    Caloric restriction extends lifespan, an effect once thought to involve attenuation of reactive oxygen species (ROS) generated by aerobic metabolism. However, recent evidence suggests that caloric restriction may in fact raise ROS levels, which in turn provides protection from acute doses of oxidant through a process called adaptation. To shed light on the molecular mechanisms of adaptation, we designed a series of genome-wide deletion fitness and mRNA expression screens to identify genes involved in adaptation to hydrogen peroxide. Combined with known transcriptional interactions, the integrated data implicate Yap1 and Skn7 as central transcription factors of both the adaptive and acute oxidative responses. They also identify the transcription factors Mga2 and Rox1 as active exclusively in the adaptive response and show that Mga2 is essential for adaptation. These findings are striking because Mga2 and Rox1 have been thought to control the response to hypoxic, not oxidative, conditions. Expression profiling of mga2Δ and rox1Δ knockouts shows that these factors most strongly regulate targets in ergosterol, fatty-acid, and zinc metabolic pathways. Direct quantitation of ergosterol reveals that its basal concentration indeed depends on Mga2, but that Mga2 is not required for the decrease in ergosterol observed during adaptation

    Age- and Temperature-Dependent Somatic Mutation Accumulation in Drosophila melanogaster

    Get PDF
    Using a transgenic mouse model harboring a mutation reporter gene that can be efficiently recovered from genomic DNA, we previously demonstrated that mutations accumulate in aging mice in a tissue-specific manner. Applying a recently developed, similar reporter-based assay in Drosophila melanogaster, we now show that the mutation frequency at the lacZ locus in somatic tissue of flies is about three times as high as in mouse tissues, with a much higher fraction of large genome rearrangements. Similar to mice, somatic mutations in the fly also accumulate as a function of age, but they do so much more quickly at higher temperature, a condition which in invertebrates is associated with decreased life span. Most mutations were found to accumulate in the thorax and less in abdomen, suggesting the highly oxidative flight muscles as a possible source of genotoxic stress. These results show that somatic mutation loads in short-lived flies are much more severe than in the much longer-lived mice, with the mutation rate in flies proportional to biological rather than chronological aging

    Direct comparison of methionine restriction with leucine restriction on the metabolic health of C57BL/6J mice

    Get PDF
    EKL was the recipient of a BBSRC postgraduate studentship. This work was funded by Tenovus Scotland project grant to MD and NM (G13/07) and BBSRC DTG. MD is also supported by the British Heart Foundation (PG/09/048/27675, PG/11/8/28703 and PG/14/43/30889) and Diabetes UK (14/0004853). NM is funded by British Heart Foundation (PG/16/90/32518).Peer reviewedPublisher PD

    Caloric restriction counteracts age-dependent changes in prolyl-4-hydroxylase domain (PHD) 3 expression

    Get PDF
    Caloric restriction remains the most reproducible measure known to extend life span or diminish age-associated changes. Previously, we have described an elevated expression of the prolyl-4-hydroxylase domain (PHD) 3 with increasing age in mouse and human heart. PHDs modulate the cellular response towards hypoxia by regulating the stability of the α-subunit of the transcriptional activator hypoxia inducible factor (HIF). In the present study we demonstrate that elevated PHD3, but not PHD1 or PHD2, expression is not restricted to the heart but does also occur in rat skeletal muscle and liver. Elevated expression of PHD3 is counteracted by a decrease in caloric intake (40% caloric restriction applied for 6 months) in all three tissues. Age-associated changes in PHD3 expression inversely correlated with the expression of the HIF-target gene macrophage migration inhibitory factor (MIF), which has been previously described to be involved in cellular HIF-mediated anti-ageing effects. These data give insight into the molecular consequences of caloric restriction, which influences hypoxia-mediated gene expression via PHD3

    Differences in genome-wide gene expression response in peripheral blood mononuclear cells between young and old men upon caloric restriction

    Get PDF
    Background: Caloric restriction (CR) is considered to increase lifespan and to prevent various age-related diseases in different nonhuman organisms. Only a limited number of CR studies have been performed on humans, and results put CR as a beneficial tool to decrease risk factors in several age-related diseases. The question remains at what age CR should be implemented to be most effective with respect to healthy aging. The aim of our study was to elucidate the role of age in the transcriptional response to a completely controlled 30 % CR diet on immune cells, as immune response is affected during aging. Ten healthy young men, aged 20–28, and nine healthy old men, aged 64–85, were subjected to a 2-week weight maintenance diet, followed by 3 weeks of 30 % CR. Before and after 30 % CR, the whole genome gene expression in peripheral blood mononuclear cells (PBMCs) was assessed. Results: Expression of 554 genes showed a different response between young and old men upon CR. Gene set enrichment analysis revealed a downregulation of gene sets involved in the immune response in young but not in old men. At baseline, immune response-related genes were higher expressed in old compared to young men. Upstream regulator analyses revealed that most potential regulators were controlling the immune response. Conclusions: Based on the gene expression data, we theorise that a short period of CR is not effective in old men regarding immune-related pathways while it is effective in young men
    corecore