46 research outputs found

    Transcriptomic analysis of the developing and adult mouse cochlear sensory epithelia

    Get PDF
    International audienceThe adult mammalian cochlea lacks regenerative ability and the irreversible degeneration of cochlear sensory hair cells leads to permanent hearing loss. Previous data show that early postnatal cochlea harbors stem/progenitor-like cells and shows a limited regenerative/repair capacity. These properties are progressively lost later during the postnatal development. Little is known about the genes and pathways that are potentially involved in this difference of the regenerative/repair potentialities between early postnatal and adult mammalian cochlear sensory epithelia (CSE). The goal of our study is to investigate the transcriptomic profiles of these two stages. We used Mouse Genome 430 2.0 microarray to perform an extensive analysis of the genes expressed in mouse postnatal day-3 (P3) and adult CSE. Statistical analysis of microarray data was performed using SAM (Significance Analysis of Microarrays) software. We identified 5644 statistically significant differentially expressed transcripts with a fold change (FC) >2 and a False Discovery Rate (FDR) ≤0.05. The P3 CSE signature included 3,102 transcripts, among which were known genes in the cochlea, but also new transcripts such as, Hmga2 (high mobility group AT-hook 2) and Nrarp (Notch-regulated ankyrin repeat protein). The adult CSE overexpressed 2,542 transcripts including new transcripts, such as Prl (Prolactin) and Ar (Androgen receptor), that previously were not known to be expressed in the adult cochlea. Our comparative study revealed important genes and pathways differentially expressed between the developing and adult CSE. The identification of new candidate genes would be useful as potential markers of the maintenance or the loss of stem cells and regenerative/repair ability during mammalian cochlear development

    Identification of candidate regions for a novel Usher syndrome type II locus

    Get PDF
    PURPOSE: Chronic diseases affecting the inner ear and the retina cause severe impairments to our communication systems. In more than half of the cases, Usher syndrome (USH) is the origin of these double defects. Patients with USH type II (USH2) have retinitis pigmentosa (RP) that develops during puberty, moderate to severe hearing impairment with downsloping pure-tone audiogram, and normal vestibular function. Four loci and three genes are known for USH2. In this study, we proposed to localize the gene responsible for USH2 in a consanguineous family of Tunisian origin. METHODS: Affected members underwent detailed ocular and audiologic characterization. One Tunisian family with USH2 and 45 healthy controls unrelated to the family were recruited. Two affected and six unaffected family members attended our study. DNA samples of eight family members were genotyped with polymorphic markers. Two-point and multipoint LOD scores were calculated using Genehunter software v2.1. Sequencing was used to investigate candidate genes. RESULTS: Haplotype analysis showed no significant linkage to any known USH gene or locus. A genome-wide screen, using microsatellite markers, was performed, allowing the identification of three homozygous regions in chromosomes 2, 4, and 15. We further confirmed and refined these three regions using microsatellite and single-nucleotide polymorphisms. With recessive mode of inheritance, the highest multipoint LOD score of 1.765 was identified for the candidate regions on chromosomes 4 and 15. The chromosome 15 locus is large (55 Mb), underscoring the limited number of meioses in the consanguineous pedigree. Moreover, the linked, homozygous chromosome 15q alleles, unlike those of the chromosome 2 and 4 loci, are infrequent in the local population. Thus, the data strongly suggest that the novel locus for USH2 is likely to reside on 15q. CONCLUSIONS: Our data provide a basis for the localization and the identification of a novel gene implicated in USH2, most likely localized on 15q

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Correction: Transcriptomic analysis of the developing and adult mouse cochlear sensory epithelia.

    No full text
    [This corrects the article DOI: 10.1371/journal.pone.0042987.]

    Antenatal Diagnosis of a Rare Neural Tube Defect: Sincipital Encephalocele

    Get PDF
    Context. Fetal sincipital encephalocele is one of the most serious congenital neural tube defects with a high risk of mortality and neonatal morbidity. Prenatal diagnosis of this malformation is important in fetal medicine. Case Report. We report a case of prenatal diagnosis of sincipital encephalocele using ultrasound and MRI imaging. The diagnosis was done at 25 weeks of gestation by identifying an anterior cephalic protrusion through a defect in the skull. Conclusion. Through this case, we discuss the differential diagnosis, management, and prognosis of such lesions

    Short-term effects of various non-steroidal anti-inflammatory drugs (NSAIDs) on Danio rerio embryos

    No full text
    Due to the widespread use of non-steroidal anti-inflammatory drugs (NSAIDs) without a medical prescription and their frequent prevalence in aquatic habitats, there are major health and environmental issues. NSAIDs have been found in surface water and wastewater in concentrations ranging from ng/L to μg/L all over the world. The purpose of this study was to determine the relationship between NSAIDs (diclofenac, ketoprofen, paracetamol and ibuprofen) exposure and associated adverse effects in the assessment of indirect human health risks posed by Danio rerio (zebrafish) and Environmental Risk Assessment (ERA) of these NSAIDs in aquatic environments. Therefore, the objectives of this study were to (i) reveal abnormality endpoints of early developmental stages, after exposure of zebrafish and (ii) perform an ecological risk assessment of aquatic organisms upon exposure to NSAIDs detected in surface waters based on the risk quotients (RQs) method. According to the toxicity data collected, all of the malformations appeared after diclofenac exposure at all concentrations. The most notable malformations were the lack of pigmentation and an increase in yolk sac volume, with EC50 values of 0.6 and 1.03 mg/L, respectively. The results obtained for the ERA revealed RQs higher than 1 for all the four NSAIDs chosen, posing ecotoxicological pressure in aquatic environments. Overall, our findings provide a critical contribution to the formulation of high-priority actions, sustainable strategies and strict regulations that minimize the negative effects of NSAIDs on the aquatic ecosystem. • To determine the LC50, lethal conditions such as coagulation, absence of heartbeat and blood flow, absence of tail separation and development of somites were taken into account. • The EC50 was calculated using sublethal parameters such as blood coagulation, pericardial edema, yolk sac edema or hypertrophy. • The 4 compounds present a high risk individually and in mixture with a RQ >> 1
    corecore