460 research outputs found

    Ultraviolet dependence of Kaluza-Klein effects on electroweak observables

    Get PDF
    In extensions of the standard model (SM) with d extra dimensions at the TeV scale the virtual exchange of Kaluza-Klein (KK) excitations of the gauge bosons gives contributions that change the SM relations between electroweak observables. These corrections are finite only for d=1; for d\ge 2 the infinite tower of KK modes gives a divergent contribution that has to be regularized introducing a cutoff (the string scale). However, the ultraviolet dependence of the KK effects is completely different if the running of the couplings with the scale is taken into account. We find that for larger d the number of excitations at each KK level increases, but their larger number is compensated by the smaller value of the gauge coupling at that scale. As a result, for any number of extra dimensions the exchange of the complete KK tower always gives a finite contribution. We show that (i) for d=1 the running of the gauge coupling decreases an 14% the effect of the KK modes on electroweak observables; (ii) in all cases more than 90% of the total effect comes from the excitations in the seven lowest KK levels and is then independent of ultraviolet physics.Comment: 8 pages, to appear in Phys. Rev.

    Contextual novelty changes reward representations in the striatum

    Get PDF
    Reward representation in ventral striatum is boosted by perceptual novelty, although the mechanism of this effect remains elusive. Animal studies indicate a functional loop (Lisman and Grace, 2005) that includes hippocampus, ventral striatum, and midbrain as being important in regulating salience attribution within the context of novel stimuli. According to this model, reward responses in ventral striatum or midbrain should be enhanced in the context of novelty even if reward and novelty constitute unrelated, independent events. Using fMRI, we show that trials with reward-predictive cues and subsequent outcomes elicit higher responses in the striatum if preceded by an unrelated novel picture, indicating that reward representation is enhanced in the context of novelty. Notably, this effect was observed solely when reward occurrence, and hence reward-related salience, was low. These findings support a view that contextual novelty enhances neural responses underlying reward representation in the striatum and concur with the effects of novelty processing as predicted by the model of Lisman and Grace (2005)

    Contextual novelty modulates the neural dynamics of reward anticipation

    Get PDF
    We investigated how rapidly the reward-predicting properties of visual cues are signaled in the human brain and the extent these reward prediction signals are contextually modifiable. In a magnetoencephalography study, we presented participants with fractal visual cues that predicted monetary rewards with different probabilities. These cues were presented in the temporal context of a preceding novel or familiar image of a natural scene. Starting at similar to 100 ms after cue onset, reward probability was signaled in the event-related fields (ERFs) over temporo-occipital sensors and in the power of theta (5-8 Hz) and beta (20-30 Hz) band oscillations over frontal sensors. While theta decreased with reward probability beta power showed the opposite effect. Thus, in humans anticipatory reward responses are generated rapidly, within 100 ms after the onset of reward-predicting cues, which is similar to the timing established in non-human primates. Contextual novelty enhanced the reward anticipation responses in both ERFs and in beta oscillations starting at similar to 100 ms after cue onset. This very early context effect is compatible with a physiological model that invokes the mediation of a hippocampal-VTA loop according to which novelty modulates neural response properties within the reward circuitry. We conclude that the neural processing of cues that predict future rewards is temporally highly efficient and contextually modifiable

    FCNC in left-right symmetric theories and constraints on the right-handed scale

    Get PDF
    We revise the limits on the FCNC higgses in manifestly left-right symmetric theories. It is shown that the combination of the Kobayashi-Maskawa CP-violation with the tree level ΔS=2\Delta S=2 higgs exchange gives very large contribution to the CP-violating ϵ\epsilon parameter. It leads to the new strong constraint on the FCNC higgs mass, M>50- 100 TeV, enhanced by factor of the order mt/mc\sqrt{m_t/m_c}. Being addressed to the supersymmetric left-right models, FCNC problem requires both right-handed scale and supersymmetric mass parameters be heavier than 50 TeV for tanβ1tan\beta\sim 1. The most relaxed case corresponds to tanβ2030tan\beta\sim 20- 30 where right-handed scale can be of the order of few TeV.Comment: 11 pages, latex, 3 figure

    The genetic architecture of the association between eating behaviors and obesity : combining genetic twin modeling and polygenic risk scores

    Get PDF
    Background Obesity susceptibility genes are highly expressed in the brain suggesting that they might exert their influence on body weight through eating-related behaviors. Objectives To examine whether the genetic susceptibility to obesity is mediated by eating behavior patterns. Methods Participants were 3977 twins (33% monozygotic, 56% females), aged 31–37 y, from wave 5 of the FinnTwin16 study. They self-reported their height and weight, eating behaviors (15 items), diet quality, and self-measured their waist circumference (WC). For 1055 twins with genome-wide data, we constructed a polygenic risk score for BMI (PRSBMI) using almost 1 million single nucleotide polymorphisms. We used principal component analyses to identify eating behavior patterns, twin modeling to decompose correlations into genetic and environmental components, and structural equation modeling to test mediation models between the PRSBMI, eating behavior patterns, and obesity measures. Results We identified 4 moderately heritable (h2 = 36–48%) eating behavior patterns labeled “snacking,” “infrequent and unhealthy eating,” “avoidant eating,” and “emotional and external eating.” The highest phenotypic correlation with obesity measures was found for the snacking behavior pattern (r = 0.35 for BMI and r = 0.32 for WC; P 70%). The snacking behavior pattern partially mediated the association between the PRSBMI and obesity measures (βindirect = 0.06; 95% CI: 0.02, 0.09; P = 0.002 for BMI; and βindirect = 0.05; 95% CI: 0.02, 0.08; P = 0.003 for WC). Conclusions Eating behavior patterns share a common genetic liability with obesity measures and are moderately heritable. Genetic susceptibility to obesity can be partly mediated by an eating pattern characterized by frequent snacking. Obesity prevention efforts might therefore benefit from focusing on eating behavior change, particularly in genetically susceptible individuals.Peer reviewe

    Minimal Supersymmetric Scenarios for Spontaneous CP Violation

    Get PDF
    We study the possibility of spontaneous CP violation (SCPV) at the tree level in models with an extended Higgs sector. We show that the minimum equations for the complex phases of the vacuum expectation values (VEVs) have always a geometrical interpretation in terms of triangles. To illustrate our method we analyze the minimal supersymmetric (SUSY) model with R-parity violating couplings and sneutrino VEVs, where there is no SCPV. Then we study SUSY models with extra Higgs doublets and/or gauge singlets, and find that the simplest scenario with SCPV must include at least two singlet fields.Comment: LaTeX, 19 pages, 4 figure

    Possibility of spontaneous CP violation in the nonminimal supersymmetric standard model with two neutral Higgs singlets

    Full text link
    A supersymmetric standard model with two Higgs doublets and two Higgs singlets is investigated if it can accommodate the possibility of spontaneous CP violation. Assuming the degeneracy of the scalar quark masses of the third generation, we find that spontaneous CP violation in the Higgs sector is viable in our model. In the case of spontaneous CP violation, the masses of the lightest two neutral Higgs bosons are estimated to be 80 and 125 GeV for some parameter values in our model, which, are consistent with LEP2 data.Comment: 18 pages, 3figure

    3D printed monoliths: From powder to an efficient catalyst for antibiotic degradation

    Full text link
    To improve the effectiveness and durability of wastewater treatment technologies, researchers are showing a growing interest in 3D printing technology. This technology has attracted significant interest owing to its ability to fabricate challenging complex geometries using different material compositions. This manuscript is focused on the development of 3D monoliths from noncommercial filaments, i.e., a powder blend of iron oxide and polylactic acid (PLA) at 15 wt% of the former. Different monolith designs have been prepared to improve the fluid dynamics of the process, so a simple cylinder (15-Fe3O4@PLA) and a cylinder with double the length and an internal mesh (15-Fe3O4@PLA-DM) were used. These monoliths were characterized by Scanning electron microscopy (SEM), Differential scanning calorimetry (DSC) and Mossbauer ¨ spectroscopy, then used for water-based ofloxacin degradation in a continuous down-up flow configuration. Additionally, computational fluid dynamics simulations were performed to estimate the degradation rate constants and analyze the distribution of fluid velocity and pollutant concentration along the 15-Fe3O4@PLA-reactor. The oxidant dose was also optimized to develop the highest degradation rate. The degradation of the target pollutant for those monoliths was 55 and 82 % under optimized conditions. In addition, the 15-Fe3O4@PLA-DM monolith was operated for long term experiments, keeping the degradation performance at a good 67 % for up to 120 h. Finally a fixed-bed reactor was mounted with printed pellets of the mixture (15:85), Fe3O4:PLA, after being ground in a range of 125–200 μm. Under this setup configuration, we observed the total degradation of ofloxacin. 3D printing technology is cheap, reproducible and time saving in the development of supported catalysts in comparison with conventional deposition techniques. Moreover, the leaching of active sites on streams was largely diminished. In fact under continuous operation the leached Fe concentration is below 0.1 ppm, corroborating the good adhesion of the catalyst in the PLA supportThis research has been supported by the Spanish Ministry of Science and Innovation thorough the project PID2021-123431OB-I0
    corecore