126 research outputs found

    The first trimester human trophoblast cell line ACH-3P: A novel tool to study autocrine/paracrine regulatory loops of human trophoblast subpopulations – TNF-α stimulates MMP15 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The trophoblast compartment of the placenta comprises various subpopulations with distinct functions. They interact among each other by secreted signals thus forming autocrine or paracrine regulatory loops. We established a first trimester trophoblast cell line (ACH-3P) by fusion of primary human first trimester trophoblasts (week 12 of gestation) with a human choriocarcinoma cell line (AC1-1).</p> <p>Results</p> <p>Expression of trophoblast markers (cytokeratin-7, integrins, matrix metalloproteinases), invasion abilities and transcriptome of ACH-3P closely resembled primary trophoblasts. Morphology, cytogenetics and doubling time was similar to the parental AC1-1 cells. The different subpopulations of trophoblasts e.g., villous and extravillous trophoblasts also exist in ACH-3P cells and can be immuno-separated by HLA-G surface expression. HLA-G positive ACH-3P display pseudopodia and a stronger expression of extravillous trophoblast markers. Higher expression of insulin-like growth factor II receptor and human chorionic gonadotropin represents the basis for the known autocrine stimulation of extravillous trophoblasts.</p> <p>Conclusion</p> <p>We conclude that ACH-3P represent a tool to investigate interaction of syngeneic trophoblast subpopulations. These cells are particularly suited for studies into autocrine and paracrine regulation of various aspects of trophoblast function. As an example a novel effect of TNF-α on matrix metalloproteinase 15 in HLA-G positive ACH-3P and explants was found.</p

    Increased expression of endothelial lipase in symptomatic and unstable carotid plaques

    Get PDF
    The aim of this study was to evaluate endothelial lipase (EL) protein expression in advanced human carotid artery plaques (HCAP) with regard to plaque (in)stability and the incidence of symptoms. HCAP were collected from 66 patients undergoing carotid endarterectomy (CEA). The degree of plaque (in)stability was estimated by ultrasound and histology. In HCAP sections, EL expression was determined by immunostaining and the intensity was assessed on a semi-quantitative scale (low: <25%, high: >25% positive cells). Monocytes and macrophages in adjacent HCAP sections were stained with a CD163 specific antibody. High EL staining was more prevalent in histologically unstable plaques (in 33.3% of fibrous plaques, 50% of ulcerated non-complicated plaques and 79.2% of ulcerated complicated plaques; χ2 test, p = 0.004) and in the symptomatic group (70.8 vs. 42.9% in the asymptomatic group; χ2 test, p = 0.028). The majority of EL immunostaining was found in those HCAP regions exhibiting a strong CD163 immunostaining. EL in HCAP might be a marker and/or promoter of plaque instability and HCAP-related symptomatology

    Maternal smoking in early pregnancy disrupts placental function through syncytiotrophoblast and macrophage dysregulation

    Get PDF
    Smoking in pregnancy is the leading avoidable cause of gestational morbidity and mortality, causally linked to fetal growth restriction (FGR). The placenta, functional interface between mother and fetus is essential for healthy fetal development. For the first time, we studied cell type-resolved smoking effects on placental development at high molecular resolution using single-nucleus RNA sequencing and deep visual proteomics of matched tissues. We validated our findings through an independent cohort and in-vitro cigarette smoke exposure to primary human trophoblast cells. Our results show placental macrophages (Hofbauer cells; HBC) and the syncytiotrophoblast (STB) barrier are most affected by smoking, with dysregulation of cell-cell adhesion, extracellular matrix organization, and stress phenotype. STBs show moderate compositional increases in smokers and in-silico trophoblast differentiation modelling indicates a preferential shift towards the STB lineage in this group. The trophoblast displays a large upregulation of pro-angiogenic effectors, increases in xenobiotic detoxification, reduced mitochondrial function, and vastly altered transmembrane transport. These molecular changes affect placental development with important consequences for fetal growth. We provide insight into placental dysfunction contributing to FGR early in pregnancy, before clinical symptoms appear. We anticipate this data to advance diagnostics and therapies to improve FGR outcomes

    IGF2 stimulates fetal growth in a sex- and organ-dependent manner

    Get PDF
    BackgroundInsulin-like growth factor 2 (IGF2) is a key determinant of fetal growth, and the altered expression of IGF2 is implicated in fetal growth disorders and maternal metabolic derangements including gestational diabetes. Here we studied how increased levels of IGF2 in late pregnancy affect fetal growth.MethodsWe employed a rat model of repeated intrafetal IGF2 administration in late pregnancy, i.e., during GD19-GD21, and measured the consequences on fetal organ weight and expression of insulin/IGF-axis components.ResultsIGF2 treatment tended to increase fetal weight, but only weight increase of the fetal stomach reached significance (+33±9%; P<0.01). Sex-dependent data analysis revealed a sexual dimorphism of IGF2 action. In male fetuses, IGF2 administration significantly increased fetal weight (+13±3%; P<0.05) and weight of fetal stomach (+42±10%; P<0.01), intestine (+26±5%; P<0.05), liver (+13±4%; P<0.05), and pancreas (+25±8%; P<0.05). Weights of heart, lungs, and kidneys were unchanged. In female fetuses, IGF2 increased only stomach weight (+26±9%; P<0.05). Furthermore, gene expression of insulin/IGF axis in the heart, lungs, liver, and stomach was more sensitive toward IGF2 treatment in male than in female fetuses.ConclusionData suggest that elevated circulating IGF2 in late pregnancy predominantly stimulates organ growth of the digestive system, and male fetuses are more susceptible toward the IGF2 effects than female fetuses.Fil: White, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Jawerbaum, Alicia Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Mazzucco, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Gauster, Martin. Medizinische Universität Graz; AustriaFil: Desoye, Gernot. Medizinische Universität Graz; AustriaFil: Hiden, Ursula. Medizinische Universität Graz; Austri

    Spectrin-based skeleton as an actor in cell signaling

    Get PDF
    This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types

    Changes in Maternal Platelet Physiology during Gestation and Their Interaction with Trophoblasts

    No full text
    Upon activation, maternal platelets provide a source of proinflammatory mediators in the intervillous space of the placenta. Therefore, platelet-derived factors may interfere with different trophoblast subtypes of the developing human placenta and might cause altered hormone secretion and placental dysfunction later on in pregnancy. Increased platelet activation, and the subsequent occurrence of placental fibrinoid deposition, are linked to placenta pathologies such as preeclampsia. The composition and release of platelet-derived factors change over gestation and provide a potential source of predicting biomarkers for the developing fetus and the mother. This review indicates possible mechanisms of platelet-trophoblast interactions and discusses the effect of increased platelet activation on placenta development.</jats:p

    Changes in Maternal Platelet Physiology during Gestation and Their Interaction with Trophoblasts

    No full text
    Upon activation, maternal platelets provide a source of proinflammatory mediators in the intervillous space of the placenta. Therefore, platelet-derived factors may interfere with different trophoblast subtypes of the developing human placenta and might cause altered hormone secretion and placental dysfunction later on in pregnancy. Increased platelet activation, and the subsequent occurrence of placental fibrinoid deposition, are linked to placenta pathologies such as preeclampsia. The composition and release of platelet-derived factors change over gestation and provide a potential source of predicting biomarkers for the developing fetus and the mother. This review indicates possible mechanisms of platelet-trophoblast interactions and discusses the effect of increased platelet activation on placenta development
    corecore