143,374 research outputs found

    Fully ab initio atomization energy of benzene via W2 theory

    Get PDF
    The total atomization energy at absolute zero, (TAE0_0) of benzene, C6_6H6_6, was computed fully {\em ab initio} by means of W2h theory as 1306.6 kcal/mol, to be compared with the experimentally derived value 1305.7+/-0.7 kcal/mol. The computed result includes contributions from inner-shell correlation (7.1 kcal/mol), scalar relativistic effects (-1.0 kcal/mol), atomic spin-orbit splitting (-0.5 kcal/mol), and the anharmonic zero-point vibrational energy (62.1 kcal/mol). The largest-scale calculations involved are CCSD/cc-pV5Z and CCSD(T)/cc-pVQZ; basis set extrapolations account for 6.3 kcal/mol of the final result. Performance of more approximate methods has been analyzed. Our results suggest that, even for systems the size of benzene, chemically accurate molecular atomization energies can be obtained from fully first-principles calculations, without resorting to corrections or parameters derived from experiment.Comment: J. Chem. Phys., accepted. RevTeX, 12 page

    W4 theory for computational thermochemistry: in pursuit of confident sub-kJ/mol predictions

    Full text link
    In an attempt to improve on our earlier W3 theory [J. Chem. Phys. {\bf 120}, 4129 (2004)] we consider such refinements as more accurate estimates for the contribution of connected quadruple excitations (T^4\hat{T}_4), inclusion of connected quintuple excitations (T^5\hat{T}_5), diagonal Born-Oppenheimer corrections (DBOC), and improved basis set extrapolation procedures. Revised experimental data for validation purposes were obtained from the latest version of the ATcT (Active Thermochemical Tables) Thermochemical Network. We found that the CCSDTQ−-CCSDT(Q) difference converges quite rapidly with the basis set, and that the formula 1.10[CCSDT(Q)/cc-pVTZ+CCSDTQ/cc-pVDZ−-CCSDT(Q)/cc-pVDZ] offers a very reliable as well as fairly cost-effective estimate of the basis set limit T^4\hat{T}_4 contribution. The largest T^5\hat{T}_5 contribution found in the present work is on the order of 0.5 kcal/mol (for ozone). DBOC corrections are significant at the 0.1 kcal/mol level in hydride systems. . Based on the accumulated experience, a new computational thermochemistry protocol for first-and second-row main-group systems, to be known as W4 theory, is proposed. Our W4 atomization energies for a number of key species are in excellent agreement (better than 0.1 kcal/mol on average, 95% confidence intervals narrower than 1 kJ/mol) with the latest experimental data obtained from Active Thermochemical Tables. A simple {\em a priori} estimate for the importance of post-CCSD(T) correlation contributions (and hence a pessimistic estimate for the error in a W2-type calculation) is proposed.Comment: J. Chem. Phys., in press; electronic supporting information available at http://theochem.weizmann.ac.il/web/papers/w4.htm

    Properties of the ground-state baryons in chiral perturbation theory

    Get PDF
    We review recent progress in the understanding of low-energy baryon structure by means of chiral perturbation theory. In particular, we discuss the application of this formalism to the description of various properties such as the baryon-octet magnetic moments, the electromagnetic structure of decuplet resonances and the hyperon vector coupling f1(0)f_1(0). Moreover, we present the results on the chiral extrapolation of recent lattice QCD results on the lowest-lying baryon masses and we predict the corresponding baryonic sigma-terms.Comment: 6 pages; shortened version to appear in the proceedings of QCD1

    Masses and magnetic moments of ground-state baryons in covariant baryon chiral perturbation theory

    Full text link
    We report on some recent developments in our understanding of the light-quark mass dependence and the SU(3) flavor symmetry breaking corrections to the magnetic moments of the ground-state baryons in a covariant formulation of baryon chiral perturbation theory, the so-called EOMS formulation. We show that this covariant ChPT exhibits some promising features compared to its heavy-baryon and infrared counterparts.Comment: 8 pages, 3 figures; plenary talk delivered by LSG at the 14th national conference on nuclear structure, April 12nd - 16th, 2012, Huzhou, Chin

    Chiral perturbation theory study of the axial N→Δ(1232)N\to\Delta(1232) transition

    Full text link
    We have performed a theoretical study of the axial Nucleon to Delta(1232) (N→ΔN\to\Delta) transition form factors up to one-loop order in covariant baryon chiral perturbation theory within a formalism in which the unphysical spin-1/2 components of the Δ\Delta fields are decoupled.Comment: 4 page
    • …
    corecore