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We present a method for analyzing the curvature~second derivatives! of the conical intersection
hyperline at an optimized critical point. Our method uses the projected Hessians of the degenerate
states after elimination of the two branching space coordinates, and is equivalent to a frequency
calculation on a single Born–Oppenheimer potential-energy surface. Based on the projected
Hessians, we develop an equation for the energy as a function of a set of curvilinear coordinates
where the degeneracy is preserved to second order~i.e., the conical intersection hyperline!. The
curvature of the potential-energy surface in these coordinates is the curvature of the conical
intersection hyperline itself, and thus determines whether one has a minimum or saddle point on the
hyperline. The equation used to classify optimized conical intersection points depends in a simple
way on the first- and second-order degeneracy splittings calculated at these points. As an example,
for fulvene, we show that the two optimized conical intersection points ofC2v symmetry are saddle
points on the intersection hyperline. Accordingly, there are further intersection points of lower
energy, and one ofC2 symmetry—presented here for the first time—is found to be the global
minimum in the intersection space. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1813436#

INTRODUCTION

Conical intersections~CIs! have been shown to play an
essential role in the radiationless decay processes involved in
photochemistry.1–8 At the simplest level, a conical intersec-
tion appears as a funnel in the two coordinates that lift the
degeneracy. However, we know that an intersection is in fact
a hyperline, i.e., a (3N28)-dimensional space where (3N
26) is the number of vibrational degrees of freedom, and
that the ‘‘conical intersections’’ we optimize with gradient-
driven algorithms are critical points in this
(3N28)-dimensional space. In the many examples we have
studied to date, we have usually been able to infer that these
optimized conical intersection points are minima in the inter-
section space~IS!, but until now we have not been able to
prove this by doing a frequency calculation, in the way that
one can for a single Born–Oppenheimer surface. Now that
on-the-fly dynamics is possible,9–13 computations are begin-
ning to explore the nature of the intersection hyperline away
from its minimum and show that these higher-energy regions
of a conical intersection hyperline can be chemically signifi-
cant. Furthermore, algorithms have been developed to map
out ~minimum-energy path! segments of the hyperline
explicitly.14 The purpose of this paper is to show that one can
develop an equation for the energy as a function of a set of
curvilinear coordinates where the degeneracy is preserved to
second order~i.e., the conical intersection hyperline!. The
curvature of the potential-energy surface in these coordinates
is the curvature of the conical intersection hyperline itself,

and thus determines whether one has a minimum or saddle
point on the hyperline. The resulting equation used to clas-
sify optimized conical intersection points depends in a
simple way on the first- and second-order degeneracy split-
tings calculated at these points.

In general terms, we propose a treatment of the (3N
28)-dimensional hyperline analogous to the one used for
the characterization of Born–Oppenheimer surfaces, where
stationary points are classified as minima or saddle points
with the help of the nuclear Hessian. One immediate appli-
cation is to the characterization of symmetry-restricted, opti-
mized points of conical intersection. Thus for an optimized
CI structure of a given symmetry, we are able to predict
whether there are related ‘‘CI points’’~i.e., critical points—
maxima and minima—lying on the same conical intersection
hyperline!, which may have lower symmetry and lower en-
ergy. As a demonstration, we will characterize the optimized
S0 /S1 critical points on the conical intersection hyperline of
fulvene.15 We will show that there are several CI critical
points of different symmetry (C2v , Cs , and C2) that are
minima or saddle points on the conical intersection hyper-
line. With the methodology that will be described in subse-
quent sections, we have characterized theC2 CI of fulvene
as the global minimum of the intersection space for the first
time, and have rationalized the interconnection of the differ-
ent stationary points on the global potential-energy surface.
In the future, these techniques can be combined with meth-
ods already developed14 to document minimum-energy paths
~intrinsic reaction coordinates! in the intersection space.

To introduce the characterization of an optimized conical
intersection point, we start from the so-called ‘‘first-order’’a!Electronic mail: mike.robb@imperial.ac.uk
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approach. Thus according to the von Neumann–Wigner
theorem,16 at a conical intersection, there are two degrees of
freedom that lift the degeneracy at first order. This leads to
the usual characterization of a conical intersection in terms
of two degeneracy-lifting coordinates that form the branch-
ing space~BS!, and the remaining (3N28)-dimensional in-
tersection space coordinates.

The degeneracy at a crossing point can also be lifted at
second order. However, we can choose a coordinate system
in which to mix the branching and intersection space coordi-
nates to remove this splitting and preserve the degeneracy to
second order. These new coordinates are curvilinear rather
than rectilinear. We are interested in the curvature of the
potential-energy surface in these coordinates, since this gives
the curvature of the conical intersection hyperline and deter-
mines whether one has a minimum or saddle point on the
hyperline.

As we will show, this second-order analysis can be car-
ried out starting from the intersection space Hessians, after
elimination of the branching space coordinates by projection.
The gradient is zero in the intersection space at an optimized
~stationary! point on a conical intersection hyperline, and the
diagonalization of the Hessian yields (3N28) vibrational
frequencies. However, we have two Hessians in the intersec-
tion space and thus two sets of vibrational frequencies; one
for each of the two degenerate components. In the simple
‘‘first-order’’ picture, we assume that the two intersecting
states will have identical Hessians. However, as we will
show, the Hessians of the two states are different because of
second-order effects. The two surfaces split as one moves
away from the optimized CI point along intersection space
coordinates~second order! as well as along the branching
space coordinates~first order!. As we shall discuss, this situ-
ation is analogous to the well-known Renner–Teller picture
for a linear molecule. In order to preserve the degeneracy of
the conical intersection correct to second order, the conical
intersection hyperline must bend as the branching and inter-
section space coordinates mix along a curvilinear coordinate.
Thus, at second order, the analysis of the Hessian in the
intersection space demonstrates how these effects change the
usual first-order picture.

We proceed now to a mathematical development before
illustrating the central concepts and demonstrating that the
method can yield new results using fulvene as an example.
The next two parts of the paper have been written so that
they can be read in any order.

QUADRATIC REPRESENTATION
OF THE POTENTIAL-ENERGY SURFACE
IN THE REGION OF A CONICAL INTERSECTION

From a practical point of view, we start with the Hes-
sians of the two degenerate states at an optimized conical
intersection point. We use an initial set of branching and
intersection space coordinates that are assumed to have come
from the diagonalization of these Hessians. Our development
will be based on a~simplified! Taylor expansion~to second
order! taken over from the spectroscopically oriented treat-
ment of conical intersections.17–19 The conical intersection
line itself, correct to second order, becomes a paraboloid or a

hyperboloid. Consequently, the characterization of the coni-
cal intersection line correct to second order requirescurvilin-
ear coordinates, which are nonlinear combinations of the
branching and intersection space coordinates. The curvature
of the conical intersection hyperline is therefore determined
by the second derivatives with respect to these curvilinear
coordinates.

The degeneracy is lifted in first-order nuclear displace-
ments via the branching space coordinates; the gradient dif-
ference~GD! vector @Eq. ~1a!# and the interstate coupling
vector @Eq. ~1b!#,

x15
]~EB2EA!

]j
, ~1a!

x25^CAu
]Ĥe

]j
uCB& , ~1b!

wherej is a vector of Cartesian displacements,CA andCB

are the adiabatic electronic wave functions, andĤe is the
clamped nucleus electronic Hamiltonian operator.~These
two vectors are used in algorithms for locating optimized
points on the conical intersection hyperline.20,21! The branch-
ing space is sometimes referred to as the g-h plane.3–5

We now introduce a set of coordinates to represent the
potential-energy surface in the region of a critical point on a
conical intersection seam,

Q̄5~Q̄x1
,Q̄x2

! % ~Q̄1 ,....,Q̄3N28!. ~2!

The branching space is spanned by the mass-weighted gra-

dient difference vector (Q̄x1
), and by the mass-weighted in-

terstate coupling vector (Q̄x2
). The orthogonal complement

space ~the intersection space1! is spanned by

(Q̄1 ,....,Q̄3N28). The potential-energy surface for ground
and excited states is obtained by diagonalizingV,

V5S EA V12

V21 EB D 5V11V25V11Va
21Vb

21Vc
2, ~3a!

V15S kAQ̄x1
kABQ̄x2

kABQ̄x2
kBQ̄x1

D , ~3b!

Va
25S (

i , j PBS
g i j

AQ̄iQ̄j (
i , j PBS

h i j
ABQ̄iQ̄j

(
i , j PBS

h i j
ABQ̄iQ̄j (

i , j PBS
g i j

BQ̄iQ̄j D , ~3c!
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Vb
25S (

i PBS, j PIS
g i j

AQ̄iQ̄j (
i PBS, j PIS

h i j
ABQ̄iQ̄j

(
i PBS, j PIS

h i j
ABQ̄iQ̄j (

i PBS, j PIS
g i j

BQ̄iQ̄j D , ~3d!

Vc
25S (

i , j PIS
g i j

AQ̄iQ̄j (
i , j PIS

h i j
ABQ̄iQ̄j

(
i , j PIS

h i j
ABQ̄iQ̄j (

i , j PIS
g i j

BQ̄iQ̄j D . ~3e!

The potential constants above,kA, kB, kAB, g i j
A , g i j

B , and
h i j

AB , are defined by the following equations:

k I5^C I uS ]Ĥe

]Q̄x1

D
0

uC I&, ~4!

kAB5^CAuS ]Ĥe

]Q̄x2

D
0

uCB&, ~5!

g i j
I 5^C I uS ]2Ĥe

]Q̄i]Q̄j

D
0

uC I&, ~6!

h i j
AB5^CAuS ]2Ĥe

]Q̄i]Q̄j

D
0

uCB&, ~7!

whereCA and CB are the degenerate adiabatic wave func-
tions computed at the conical intersection point. Since we
use state-averaged wave functions, these two states are rig-
orously orthogonal~see the discussion in Ref. 23 about the
choice of degenerate wave functions and the choice of the
two vectors for the branching space!. Diagonalization of the
potential matrix at any finite displacement along the coordi-
natesQ̄ gives the energies of stateA or B. The reference
energy isEA

0 , or its equivalentEB
0 , the adiabatic energy at

Q̄50 ~an optimized CI point!. The termskA, kB, andkAB

are just the gradients and the interstate coupling, which are
computed during a conical intersection optimization. The
second-order interstate coupling termsh i j

AB could be com-
puted. However, in this paper we base our analysis on the
diagonal termsg i i

A and g i i
B , which can be obtained from a

frequency calculation in the reduced (3N28)-dimensional
intersection space.

We now discuss the interpretation of the first- and
second-order termsk and g i j

I , h i j
AB , respectively, with the

help of the partition ofV @Eq. ~3!#. The first-order part ofV,
V1, contains the first-order termsk. It is clear that for any
displacement in the branching space (Q̄x1

,Q̄x2
), the degen-

eracy is lifted~to first order! via V1. Notice that we assume
that we are expanding about an optimized point on the coni-
cal intersection, so the gradient terms occur only in the
branching space~gradient difference alongQ̄x1

and interstate

coupling alongQ̄x2
). For a displacement in the intersection

space (Q̄1 ,...,Q̄3N28), the degeneracy remains to first order

but is, in general, lifted at second order through the terms in
V2 if all the g i j

A are not equal to theg i j
B and/or theh i j

AB are
not zero. The second-order terms are partitioned in three
groups:Va

2 includes effects along the branching space modes,
Vb

2 includes effects between the branching and intersection
space modes, andVc

2 includes effects along the intersection
space modes. For simplicity, we shall useal i j

A for termsl i j
A

PVa
2 , etc.
To keep the development simple, we shall now introduce

some approximations. We discuss the validity of some of
these approximations subsequently. First, we assume that all
so-called cross-quadratic termsg i j ( iÞ j ) and all second-
order interstate couplingsh i j

AB are zero. Thus,Vb
2 can be

neglected, and the remaining second-order parts are simpli-
fied. Of course, in general,g i j

AÞg i j
B so that one has different

sets of eigenvectors for the two states. In practice, the eigen-
vectors for two states are almost identical, and it is the ei-
genvalues or diagonal elements that are different. The as-

FIG. 1. Classification of Renner–Teller-type profiles along the intersection
space rectilinear coordinates.
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sumption that allh i i
AB terms are zero is rigorous for the

fulvene example discussed below, because the so-called
second-order interstate couplings are zero by symmetry.
Thus, we are left with a simplified quadratic form that con-
tains only diagonal second-order terms,

V5E1S kAQ̄x1
kABQ̄x2

kABQ̄x2
kBQ̄x1

D
1S (

i PBS

ag i i
AQ̄i

2 0

0 (
i PBS

ag i i
BQ̄i

2D
1S (

i PIS

cg i i
AQ̄i

2 0

0 (
i PIS

cg i i
BQ̄i

2D , ~8!

whereE is a diagonal matrix with diagonal elements equal to
EA

0 andEB
0 ~energies at the conical intersection point!. This

form is useful because the gradient terms are zero in the
intersection space. One can obtain new insights by carrying
out a standard frequency analysis and by calculating the
force constantscg i i

A and cg i i
B in this space.

Let us digress at this stage and discuss the interpretation
that one might make of a frequency analysis for each state
within the intersection space. From a conceptual point of
view, it is possible to distinguish three different cases for the
frequencies that might be obtained. In the intersection space,
the conical intersection behaves like a Renner–Teller inter-
section of a linear molecule in an orbitally degenerate state;
the gradient of each state is zero, and the degeneracy is lifted
quadratically. The various possibilities are shown in Fig. 1.22

However, interpretation of the frequency analysis within
an intersection space on the basis of Fig. 1 is by no means
straightforward. If the curvature of both surfaces is the same,
then one is tempted to imagine that the optimized point on
the conical intersection hyperline is a maximum or mini-
mum. However, when the curvature of both surfaces in the
intersection space is different, there is no obvious way to

guess the curvature of the conical intersection hyperline it-
self. The conceptual problem is resolved only when one
moves from rectilinear coordinates to curvilinear coordi-
nates.

Before these curvilinear coordinates are expressed math-
ematically, we develop this idea intuitively as a combination
of first- and second-order degeneracy-lifting effects. As we
have just discussed in Fig. 1, an infinitesimal displacement
dQ̄IS along one of the intersection space coordinates pro-
duces a splitting of the surfaces equivalent to the difference
between the two eigenvalues~see also the left-hand side of
Fig. 2, where the effect is shown using finite displacements!.
However, a subsequent infinitesimal displacementdQ̄BS

along a branching space coordinate, namely, the gradient dif-
ference, can eventually recover the degeneracy by bringing
the energies of the two states together again. Thus, the new
degeneracy-retaining coordinate is realized as a combination
of the two displacements, and a new set of degeneracy-
retaining coordinates can be defined as combinations of one
intersection space and one branching space coordinate~the
gradient difference!.

CHARACTERIZATION OF THE SEAM: DEFINITION
OF A CURVILINEAR COORDINATE SYSTEM
AND CALCULATION OF THE SEAM CURVATURE

Our purpose in this section is to develop the working
equations for the characterization of the conical intersection
using the simplified quadratic form developed previously
@Eq. ~8!#. After diagonalization ofV, the energies of the two
states can be expressed as

EA,B5lQ̄x1
1 (

i PBS

av i Q̄i
21 (

i PIS

cv i Q̄i
26

1

2AS dkQ̄11 (
i PBS

adg i Q̄i
21 (

i PIS

cdg i Q̄i
2D 2

1~2kABQ̄x2
!2, ~9a!

l5~kB1kA!/2, ~9b!

dk5kB2kA, ~9c!

v i5~g i i
B1g i i

A!/2, ~9d!

dg i5g i i
B2g i i

A . ~9e!

Thus the energy difference between the two states is

FIG. 2. Effect of consecutive displacements from the conical intersection
along one IS mode and the GD mode of the BS.

11565J. Chem. Phys., Vol. 121, No. 23, 15 December 2004 The conical intersection seam

Downloaded 30 Nov 2004 to 155.198.9.154. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



DE5AS dkQ̄x1
1 (

i PBS

adg i Q̄xi

2 1 (
i PIS

cdg i Q̄i
2D 2

1~2kABQ̄x2
!2. ~10!

In this expression, it is clear that the energy splitting between
the intersecting states comes from first-order effects along
the branching space coordinatesx1 and x2 and from qua-
dratic second-order effects along all coordinates. Moreover,
by assuming that all cross-quadratic termsg i j ( iÞ j ) be-
tween branching and intersection space coordinates are zero
and that second-order interstate couplingsh i j are zero, we
have the tacit assumption that all energy splittings that ap-
pear as differences in the eigenvalues of the two intersection
space Hessians come from differences in the force constants
of the two states within the intersection space itself.

We now proceed to derive the equation for the conical
intersection hyperline correct to second order. We begin by
setting the energy difference in Eq.~10! to zero. This gives
the condition for the curvilinear coordinates that retain the
energy degeneracy. These coordinates are used to obtain an
expression for the energy of the seam as a function of the
curvilinear coordinates$t i%. This expression is finally used to
characterize the seam by its second derivatives,
(]2E/]t i

2) t i50 .
For our remaining analysis, we introduce one more sim-

plification, namely, we neglect the quadratic splittings along
the branching space modes,adg i . In fact, the inclusion of
these terms would complicate the following development but
does not change the conclusions. As we will show, theadg i

terms affect the magnitude of (]2E/]t i
2) t i50 but not its sign,

which is our main point of interest~see Appendix for the
details of includingadg i). Neglecting theadg i splitting and
setting the energy difference@Eq. ~10!# to zero, one obtains
Eq. ~11!,

S dkQ̄x1
1(

IS

cdg i Q̄i
2D 2

1~2kABQ̄x2
!250. ~11!

From Eq.~11!, the curvilinear coordinates$t i% will be com-
binations of the intersection space coordinates with the gra-
dient difference vector.~If the second-order interstate cou-
pling is included, then the interstate coupling coordinate of
the branching space mixes as well.! Thus Eq.~11! is simpli-
fied to

dkQ̄x1
1(

IS

cdg i Q̄i
250. ~12!

Thus, the equation of the seam is a paraboloid. There are
(3N28) solutions to this equation, which are linear combi-
nations of the (3N28) linearly independent intersection
space modes with theQ̄x1

coordinate~gradient difference!.
Each curvilinear coordinatet i is obtained as a solution to Eq.
~13!,

dkQ̄x1
1cdg i Q̄i

250. ~13!

We proceed by writing Eq.~13! as a function of the param-
eter t.

Q̄x1
52

1

dk
t i
252at i

2, a5
1

dk
, ~14!

Q̄i5
1

Acdg i

t i5b i t i , b i5
1

Acdg i

. ~15!

The expression for the energy of one of the states along the
Q̄x1

andQ̄i coordinates is obtained from Eq.~9! and is

EA5lQ̄x1
1ag1Q̄x1

2 1cg i Q̄i
21dkQ̄x1

1cdg i Q̄i
2

5kAQ̄x1
1ag11

A Q̄x1

2 1cg i i
AQ̄i

2. ~16!

Substituting from Eqs.~15! and ~16! we have

EA52akAt i
21ag11

A a2t i
41cg i i

Ab i
2t i

2

5ag11
A a2t i

41~cg i i
Ab i

22akA!t i
2. ~17!

Equation ~17! gives the energy of the states along a
degeneracy-retaining coordinatet i . We refer to it as the en-
ergy of the intersection seam~hyperline! along the curved
coordinatet i . The expression required to characterize the
hyperline is then

S ]2E

]t i
2 D

t i50

52~g i
Ab i

22kAa!52H S g i
A

dg i
D 2S kA

dk D J . ~18!

The superscriptc from the g terms has been omitted for
clarity, but it should be clear that the terms refer to the
branching space coordinate~the gradient difference in the
fulvene example! and theg terms refer to the intersection
space coordinates. This gives us a working equation for the
analysis of the curvature of the intersection hyperline that
arises from second-order effects in the intersection space and
from first-order effects along the branching space coordi-
nates.

At this stage, we need to consider the effect of a trans-
formation of the two degenerate wave functions at the coni-
cal intersection~see Ref. 23 for a very general discussion of
this problem!. If two degenerate wave functions transform as
different irreducible representations of some group, then one
can always make a unique choice for the two vectors of the
branching space. However, when a molecule has no symme-
try, the degenerate wave functions at the conical intersection
are only unique to within a unitary transformation amongst
themselves. Clearly the transformation of the degenerate
wave functions changes or rotates the basis vectors~gradient
difference and interstate coupling vectors! of the branching
space. At the same time, the gradient difference and inter-
state coupling vectors are interconverted. Our analysis re-
mains valid, although thedg i term of Eq. ~18! would be,
strictly speaking, 2h i

AB , andkA would be the projection of
the gradient of stateA along the new interstate coupling
coordinate.

11566 J. Chem. Phys., Vol. 121, No. 23, 15 December 2004 Paterson et al.
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Thus, when there is no symmetry, and the gradient dif-
ference coordinate that occurs in Eqs.~11! and ~12! is not
uniquely defined, does the analysis that we have just pre-
sented remain valid? Clearly in Eqs.~11! and ~12! all the
quantities are differences between the values for different
states. One might expectdg i5g i i

B2g i i
A to be invariant to a

transformation between statesA andB; we have carried out
numerical tests and this seems to be the case, but as yet we
have no rigorous proof.

COMPUTATIONAL DETAILS

Calculations were done at the complete active space self
consistent field@CASSCF~6,6!/cc-pVDZ# level of theory
with a development version ofGAUSSIAN99.24 The state-
averaged Hessian was computed for both roots of the degen-
erate state-averaged CASSCF wave function. The branching
space was mass weighted and projected from each Hessian to
yield two (3N28)-dimensional Hessians.

For every critical point, the normal coordinates of the
two degenerate states were matched with each other by pro-
jecting one set upon the other. For the two criticalC2v inter-
section points of fulvene the normal coordinates of each sur-
face were parallel to each other to within 1° or 2°. This is
equivalent to an accuracy of around two decimal places in
the Cartesian displacement vectors. We are therefore confi-
dent that the set of coordinates used was sufficiently accurate
to map out the seam of intersection qualitatively.

The valence-bond resonance structures for each compo-
nent of the degenerate electronic state at all of the optimized
intersections were obtained from the spin-exchange density
using localized orbitals.25 See Ref. 26 for details.

APPLICATION: ANALYZING THE S0 ÕS1 SEAM
IN FULVENE

The photophysics of fulvene is characterized by a lack of
fluorescence, which indicates fast internal conversion of the
excited state to the ground state via a conical intersection.27

In a previous CASSCF study, two distinct critical points on
the S0 /S1 conical intersection seam were located:15 in
CIplan, the methylene group lies in the plane of the ring, and
in the other structure,CIperp, the methylene group is perpen-
dicular to the plane. Both structures haveC2v symmetry, but
CIperp lies approximately 8 kcal mol21 below CIplan ~Table
I!. The original CASSCF study of the potential-energy sur-

faces was complemented by a molecular mechanics valence-
bond ~MMVB ! dynamics study where the point of decay to
the ground state was analyzed for many trajectories. The
trajectories were found to decay at all methylene torsion
angles, suggesting that the two conical intersection critical
points ofC2v symmetry are interconnected by a continuous
seam of intersection along the methylene torsion
coordinate.15 ~This was the first such example we studied.!
We are now finally in a position to determine the curvilinear
hyperline coordinate that connects the planar and twisted in-
tersection points. Our results show that this curvilinear coor-
dinate is composed of the torsion and bond-inversion stretch-
ing ~gradient difference! coordinates, shown in Fig. 3 in
bold. Torsion alone does not preserve the degeneracy, and the
variation in mixing with the gradient difference along the
seam leads to the curvature of the seam shown in Fig. 3.

We have characterized the two CI critical points ofC2v
symmetry located previously as saddle points in the intersec-
tion space using Eq.~18!. Table II shows~as we explain fully
below! that the curvature of the CI hyperline atCIplan is
negative either when the torsion mode and the gradient dif-
ference are combined to produce the curvilinear coordinate
or when the pyramidalization mode and the gradient differ-
ence mode are combined. Thus, there should exist lower-
energy CI critical points on the hyperline along these curved
coordinates, and indeed, we find that the ‘‘global minimum’’
of the intersection space is a structure ofC2 symmetry
(CI63) with a torsion angle of 63° that we had never
located—or thought to look for—in our previous work.

The relative energies of the critical points~minima of the
S0 and S1 states and optimized conical intersection points!
are summarized in Table I, and the relevant geometric pa-
rameters are given in Table III. The relevant frequencies ob-
tained from the intersection space Hessian calculation for the
conical intersections ofC2v symmetry are listed in Table IV.
~The full list of frequencies appears in EPAPS supporting
information.28!

The vibrational frequencies of the intersection space
modes~i.e., the rectilinear coordinates tangent to the curvi-
linear seam at the optimized CI! can be understood in terms
of valence-bond representations of the components of the

TABLE I. FulveneS0 /S1 energetics: CASSCF~6,6!/cc-pvDZ.

Geometry~Table III! Adiabatic state Energy/a.u.

Relative
energy

~to
S0 minimum/
kcal mol21)

S0 minimum S0 2230.7464 0.0
S1 planar minimum S1 2230.6489 61.2

CIplan S0 /S1 2230.6359 69.4
CIperp S0 /S1 2230.6478 61.8
CI63 S0 /S1 2230.6514 59.6
CIpyr S0 /S1 2230.6381 67.9

FIG. 3. Plot of theS0 and S1 surfaces of fulvene along the torsion and
bond-inversion coordinates. The seam of intersection is marked as a bold
line.
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degenerate electronic state. These modes have Renner–Teller
topologies~Fig. 1! and it is these second-order splittings that
result in the seam curvature. We now discuss these second-
order splittings in detail for the twoC2v optimized CI critical
points.

We start our analysis with the planar structures ofC2v
symmetry ~Fig. 4!. At the Franck–Condon geometry, the
ground state hasA1 symmetry, while the lowest singlet ex-
cited state (S1) hasB2 symmetry. The valence-bond struc-
tures for the two states are shown in Fig. 4. The ground state
has a closed-shell structure with three localized double
bonds, whereas the excited state has a diradical structure.
The planar conical intersection ofC2v symmetry has a
sloped1 topology along the gradient difference, which corre-
sponds to symmetric bond-length inversion~recoupling or
exchange of the single and double bonds!. The interstate cou-
pling is an antisymmetric stretch of the C–C bonds.

From our intersection space Hessian calculation, we ob-
tain the ‘‘frequencies’’ along the rectilinear intersection space
coordinates. The second-order splittings are less than
300 cm21 ~RT-I profiles, see Fig. 1! for all modes except
two. These modes are documented in Table IV and corre-
spond to the methylene pyramidalization ofb1 symmetry and
the methylene torsion ofa2 symmetry. These two modes
have real frequencies for theA1 state~i.e., positive curvature
of the surface along those modes!, but have imaginary values

for theB2 state~negative curvature!, corresponding to RT-II-
type profiles~see Fig. 1!.

One can rationalize the different signs of the curvature
for the two states using the valence-bond structures shown in
Fig. 4. In theA1 state, there is ap bond between C1 and C6

and the pyramidalization and torsion modes have real fre-
quencies. In contrast to this, in theB2 state, the methylene
group carries an uncoupled electron~i.e., a radical! and the
energy is lowered by the same modes~i.e., imaginary fre-
quencies!.

Due to the different signs of the curvatures, there is a
substantial second-order splitting along these modes. The
degeneracy-retaining, curvilinear coordinates$t i% are combi-
nations of these modes with the gradient difference coordi-
nate. Substituting the computed gradients and curvatures at
the intersection in Eq.~18!, we calculate the value of
(]2Es(t i)/]t i

2) t i50 ~see Table II!. In both cases, forCIplan we
obtain negative second derivatives~for the remaining modes
we obtain only positive second derivatives! for the curvature
along the curvilinear coordinatet i . Thus,CIplan is the analog
of a second-order saddle point in the intersection space~i.e.,
on a hyperline!. Displacement along a combination of the
bond inversion~gradient difference! and methylene torsion
coordinate lowers the energies of the two states but preserves
the degeneracy. The same applies for the combination of
pyramidalization and gradient difference coordinates.

Along the curved methylene torsion plus gradient differ-
ence coordinate, we have optimized a lower-lying intersec-

TABLE IV. Relevant intersection space frequencies~RT-II profiles, Fig. 1!
at CIplan and CIperp.

CIplan
1A1 state 1B2 state

Symmetry v (cm21) v (cm21)

b1
a 405 320i

a2
b 431 181i

CIperp
1A2 state 1B1 state

Symmetry v (cm21) v (cm21)

a2
b 1006i 376

b1
a 20 i 176

aMethylene pyramidalization.
bMethylene torsion.
ci 5A21.

TABLE II. Computed first-order parameters~projection of gradients onto gradient difference! and second-order parameters used to characterize the hyperline
curvature at the four optimized fulvene CI critical points~in arbitrary units!.

CI
Intersection
space mode kA kB dk5kB2kA

g i i
A

(3105)
g i i

B

(3105)
dg i5g i i

B2g i i
A

(3105)
S]2E

]ti
2 D

ti50

52HS gi
A

dgi
D2SkA

dkDJ
CIPlan Torsion 20.03329 20.10164 20.06835 1.85761 20.32761 22.18522 22.674

Pyramidalization 1.64025 21.02400 22.66425 22.205
CIPerp Torsion 0.02904 20.02348 20.05251 210.12036 1.41376 11.53412 20.649

Pyramidalization 20.00400 0.30976 0.31376 1.080
CI63 Torsion 0.05361 20.00652 20.06013 0.50625 2.53009 2.02384 2.283

Pyramidalization 2.46016 20.30276 22.76292 0.002
CIPyr Torsion 0.09727 0.02809 20.06918 20.22500 1.98025 2.20525 2.608

Pyramidalization 0.96100 1.67281 0.71181 5.512

TABLE III. Fulvene S0 /S1 optimized conical intersection geometries. All
bond lengths are in angstroms.

CIplan

C2v

CIperp

C2v

CI63

C2

CIpyr

Cs

1–2 1.372 1.424 1.409 1.377
2–3 1.531 1.424 1.461 1.521
3–4 1.320 1.413 1.371 1.326
4–5 1.531 1.424 1.461 1.521
1–5 1.372 1.424 1.409 1.377
1–6 1.578 1.478 1.481 1.567

H7– 6 – 1 – 2
dihedral

0.0° 90.0° 63.1° 18.1
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tion of C2 symmetry (A and B states! with a methylene
torsion angle of 63°, CI63, which lies approximately
10 kcal mol21 below theCIplan. This confirms the prediction
of our intersection space Hessian analysis. Further, along the
curved pyramidalization mode, there is a conical intersection
of Cs symmetry, CIpyr , which lies approximately
1.5 kcal mol21 below the planar one. Analysis of the Hes-
sians atCI63 and CIpyr gives positive second derivatives
along all curved coordinatest i , see Table II.

To complete our analysis of the CI hyperline, we have
calculated the Hessians at the twisted intersection ofC2v
symmetry, CIperp. In this case, the two degenerate states
haveA2 and B1 symmetries, and correlate with theA1 and
B2 states at the planar intersection, respectively. Similar to
the results for the planar intersection, at the twisted intersec-
tion of C2v symmetry, there is substantial second-order split-
ting ~RT-II-type profile! along the methylene torsion and py-
ramidalization modes~of a2 andb1 symmetries respectively!
~see Table IV!. However, the curvature of theA andB states
along the rectilinear intersection space coordinates is re-
versed compared toCIplan. The large imaginary frequency
for the A2 state along the torsion mode comes from the
C1– C6 p bond for that state, and the gradient difference
coordinate corresponds, as in the case of the planar intersec-
tion, to the symmetric bond inversion. Using Eq.~18!, we
find a negative sign for (]2Es(t i)/]t i

2) t i50 along the curved
coordinate of combined bond inversion and torsion, and a
positive sign along the one that contains the methylene py-
ramidalization~Table II!. Thus,CIperp is a first-order saddle
point on the CI hyperline. This critical point connects the
twisted intersectionCI63 with its analogCI638 ~torsion angle
117°) and lies approximately 2 kcal mol21 above them~see
the energetics of Table I!.

To summarize, our CI hyperline analysis for the two
conical intersections ofC2v symmetry gives RT-II-type pro-
files along the methylene torsion and pyramidalization
modes for both structures. These are the only two modes that
give a large second-order splitting at these points. While
there is no intuitive way of guessing whether a lowering of
symmetry along these modes will lead to lower-energy coni-

cal intersection structures, with the help of Eq.~18! it is
possible to predict this behavior.

We now discuss how the computed curvature of the
hyperline—together with the first- and second-order param-
eters collected in Table II—can be used to produce a global
‘‘cartoon’’ of the two potential surfaces~Figs. 3 and 5! show-
ing the seam of intersection. Figure 5 shows a one-
dimensional representation of the seam along the curvilinear
coordinate composed of the methylene torsion/bond inver-
sion. The curvilinear coordinate is projected onto the torsion
anglef and the profile corresponds to half a rotation of the
methylene group (180°). TheC2v structures (f50°, 90°,
and 180°) are maxima along this curvilinear coordinate,
whereas theC2 structures (f563° and 117°) are minima.
Figure 3 is a two-dimensional cartoon of theS0 andS1 sur-
faces in the space of one rectilinear intersection space coor-
dinate, the torsion, and the bond-inversion coordinate~gradi-
ent difference!. This cartoon illustrates the curvatures of the
two states at the two critical points ofC2v symmetry. From
Fig. 3, it is clear that the seam of intersection lies along a
curved line, a combination of the bond stretching and meth-
ylene torsion coordinates. Along the path fromCIplan to
CIperp ~throughCI63), the bond lengths change progressively,
following the bond-inversion coordinate. This is shown by
the bond lengths in Table III~stretching of the C1– C2,
C1– C5, and C3– C4 bonds and contraction of C1– C6,
C2– C3, and C4– C5). At the same time, the gradient differ-
ence coordinate changes along the seam. It is purely bond
inversion at theC2v structures~where the gradient along the
methylene torsion is zero!, but it has a torsion component all
along the seam~cf. the gradient difference at theC2 mini-
mum, Fig. 6!. Thus, the two rectilinear coordinates mix
along the CI hyperline.

In a similar manner, the path connecting theCIplan and
CIpyr also contains the bond-inversion coordinate, but gradu-
ally gains a pyramidalization component along the curvilin-
ear seam. See Fig. 7 for the gradient difference coordinate at
the optimized intersectionCIpyr .

To summarize, the branching and intersection space co-
ordinates provide a rectilinear set of orthogonal coordinates
that can be used to characterize the curvilinear conical inter-
section seam. The rectilinear coordinates are tangent to the
curved seam at any optimized critical point on the CI seam.
Using Eq.~18! above allows the determination of the curva-

FIG. 4. Surface topology for theS0 andS1 states in the restricted space of
C2v symmetry~planar geometries!, including branching-space coordinates
at CIplan.

FIG. 5. One-dimensional profile~projection! of the seam of theS1 /S0 in-
tersection in fulvene along the curved methylene torsion/bond-inversion co-
ordinate.
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ture of the seam at these points and predicts whether or not
there are any lower-lying CI critical points. In fulvene, we
have shown that the two previously found points ofC2v
symmetry are in fact first- and second-order saddle points on
the CI hyperline and accordingly there exist two minima on
the hyperline that had not been found previously.

CONCLUSIONS

Our CI hyperline analysis of fulvene has shown that at
the optimized conical intersections ofC2v symmetry, there
are substantial second-order splittings associated with
Renner–Teller type-II profiles along some vibrational coor-
dinates. These second-order splittings along the rectilinear
intersection space coordinates can be readily rationalized in
terms of a valence-bond representation of the degenerate
states. The rectilinear branching and intersection space coor-
dinates are tangent to the seam of intersection at any opti-
mized CI critical point; however, they can be used to deter-
mine the local curvature of the seam. In fulvene, this analysis
was used to show that theC2v CI critical points found in a
previous study are in fact first- and second-order saddle
points on the hyperline. Our new methodology predicts the
curvilinear seam coordinate that retains the degeneracy and
leads to the minima on the hyperline, which we have opti-
mized for the first time.

Our analysis presented above remains valid as long as
the cross-quadratic termscdg i j andh i j

AB ( iÞ j ) are zero. In

that case, the coordinates that compose the
(3N28)-dimensional degenerate space only have to be re-
defined as the curvilinear coordinatest i . This is not valid
anymore when there are large cross-quadratic terms, i.e., dis-
placements along two curved coordinatest i and t j will not
retain degeneracy. In our analysis, we cannot identify the
cross-quadratic terms directly, but their effect can be seen on
the eigenvectors of the intersection space Hessian~the recti-
linear ‘‘normal modes’’ of the intersection space!, that will
be significantly different for the Hessians of the two states.
In these cases, one should consider that the degenerate space
at the conical intersection has a lower dimension than (3N
28). Future work will consider the application of the above
methodology to cases with no symmetry when this effect
may occur.
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APPENDIX: MODIFIED HYPERLINE CURVATURE

In this Appendix we give a calculation of the second
derivative of the hyperline with the inclusion ofadg1 terms
~second-order splitting along the gradient difference!. Equa-
tion ~13!, which is used to determine the curved coordinatet i

becomes

dkQ̄x1
1adg1Q̄x1

2 1cdg i Q̄i
250. ~A1!

Two cases have to be considered here. For the first case
(dg1dg i.0, elliptical seam!, the second derivative is

S ]2E~ t i !

]t i
2 D

t i50

5
dk

2adg1
cdg i

~g i i
AkB2g i i

BkA!. ~A2!

For the alternative case (dg1dg i,0, hyperbolic seam!, the
second derivative is

S ]2E~ t i !

]t i
2 D

t i50

5
dk

2adg1
cdg i

~g i i
BkA2g i i

AkB!. ~A3!

In both cases, the sign of the second derivative is given by

signS ]2E~ t i !

]t i
2 D

t i50

[sign@dk~g i i
AkB2g i i

BkA!#. ~A4!
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