27 research outputs found

    FALCON: a concept to extend adaptive optics corrections to cosmological fields

    Get PDF
    FALCON is an original concept for a next generation spectrograph at ESO VLT or at future ELTs. It is a spectrograph including multiple small integral field units (IFUs) which can be deployed within a large field of view such as that of VLT/GIRAFFE. In FALCON, each IFU features an adaptive optics correction using off-axis natural reference stars in order to combine, in the 0.8-1.8 \mu m wavelength range, spatial and spectral resolutions (0.1-0.15 arcsec and R=10000+/-5000). These conditions are ideally suited for distant galaxy studies, which should be done within fields of view larger than the galaxy clustering scales (4-9 Mpc), i.e. foV > 100 arcmin2. Instead of compensating the whole field, the adaptive correction will be performed locally on each IFU. This implies to use small miniaturized devices both for adaptive optics correction and wavefront sensing. Applications to high latitude fields imply to use atmospheric tomography because the stars required for wavefront sensing will be in most of the cases far outside the isoplanatic patch.Comment: To appear in the Backaskog "Second Workshop on ELT" SPIE proceeding

    Ultraphot

    No full text
    International audienc

    FALCON: multi-object AO

    Get PDF
    International audienceFALCON is a wide-field, multi-object integral field spectrograph equipped with adaptive optics. It is dedicated to the study of the formation process of primordial galaxies. The AO system uses natural guide stars, and the high sky coverage required for these studies is obtained using tomographic techniques for the wavefront analysis. The structure of the OA system is very new, and particularly suited for a future implementation on extremely large telescopes. To cite this article: E. Gendron et al., C. R. Physique 6 (2005)
    corecore