3,222 research outputs found
Gravitational Collapse of Dust with a Cosmological Constant
The recent analysis of Markovic and Shapiro on the effect of a cosmological
constant on the evolution of a spherically symmetric homogeneous dust ball is
extended to include the inhomogeneous and degenerate cases. The histories are
shown by way of effective potential and Penrose-Carter diagrams.Comment: 2 pages, 2 figures (png), revtex. To appear in Phys. Rev.
Gravitational Collapse with a Cosmological Constant
We consider the effect of a positive cosmological constant on spherical
gravitational collapse to a black hole for a few simple, analytic cases. We
construct the complete Oppenheimer-Snyder-deSitter (OSdS) spacetime, the
generalization of the Oppenheimer-Snyder solution for collapse from rest of a
homogeneous dust ball in an exterior vacuum. In OSdS collapse, the cosmological
constant may affect the onset of collapse and decelerate the implosion
initially, but it plays a diminishing role as the collapse proceeds. We also
construct spacetimes in which a collapsing dust ball can bounce, or hover in
unstable equilibrium, due to the repulsive force of the cosmological constant.
We explore the causal structure of the different spacetimes and identify any
cosmological and black hole event horizons which may be present.Comment: 7 pages, 10 figures; To appear in Phys. Rev.
Gravitational Collapse: Expanding and Collapsing Regions
We investigate the expanding and collapsing regions by taking two well-known
spherically symmetric spacetimes. For this purpose, the general formalism is
developed by using Israel junction conditions for arbitrary spacetimes. This
has been used to obtain the surface energy density and the tangential pressure.
The minimal pressure provides the gateway to explore the expanding and
collapsing regions. We take Minkowski and Kantowski-Sachs spacetimes and use
the general formulation to investigate the expanding and collapsing regions of
the shell.Comment: 12 pages, 4 figures, accepted for publication in Gen. Relativ. Gra
Granulated superconductors:from the nonlinear sigma model to the Bose-Hubbard description
We modify a nonlinear sigma model (NLSM) for the description of a granulated
disordered system in the presence of both the Coulomb repulsion and the Cooper
pairing. We show that under certain controlled approximations this model is
reduced to the Bose-Hubbard (or ``dirty-boson'') model with renormalized
coupling constants. We obtain a more general effective action (which is still
simpler than the full NLSM action) which can be applied in the region of
parameters where the reduction to the Bose-Hubbard model is not justified. This
action may lead to a different picture of the superconductor-insulator
transition in 2D systems.Comment: 4 pages, revtex, no figure
Propagation of gravitational waves from slow motion sources in a Coulomb type potential
We consider the propagation of gravitational waves generated by slow motion
sources in Coulomb type potential due to the mass of the source. Then, the
formula for gravitational waveform including tail is obtained in a
straightforward manner by using the spherical Coulomb function. We discuss its
relation with the formula in the previous work.Comment: 13 pages, no figures, to be published in Phys. Rev.
Strong Effects of Weak Localization in Charge Density Wave/Normal Metal Hybrids
Collective transport through a multichannel disordered conductor in contact
with charge-density-wave electrodes is theoretically investigated. The
statistical distribution function of the threshold potential for charge-density
wave sliding is calculated by random matrix theory. In the diffusive regime
weak localization has a strong effect on the sliding motion.Comment: To be published in Physical Review
Absence of a Zero Temperature Vortex Solid Phase in Strongly Disordered Superconducting Bi Films
We present low temperature measurements of the resistance in magnetic field
of superconducting ultrathin amorphous Bi films with normal state sheet
resistances, , near the resistance quantum, . For
, the tails of the resistive transitions show the thermally activated
flux flow signature characteristic of defect motion in a vortex solid with a
finite correlation length. When exceeds , the tails become
non-activated. We conclude that in films where there is no vortex
solid and, hence, no zero resistance state in magnetic field. We describe how
disorder induced quantum and/or mesoscopic fluctuations can eliminate the
vortex solid and also discuss implications for the magnetic-field-tuned
superconductor-insulator transition.Comment: REVTEX, 4 pages, 3 figure
Simplified R-Symmetry Breaking and Low-Scale Gauge Mediation
We argue that some of the difficulties in constructing realistic models of
low-scale gauge mediation are artifacts of the narrow set of models that have
been studied. In particular, much attention has been payed to the scenario in
which the Goldstino superfield in an O'Raifeartaigh model is responsible for
both supersymmetry breaking and R-symmetry breaking. In such models, the
competing problems of generating sufficiently massive gauginos while preserving
an acceptably light gravitino can be quite challenging. We show that by sharing
the burdens of breaking supersymmetry and R-symmetry with a second field, these
problems are easily solved even within the O'Raifeartaigh framework. We present
explicit models realizing minimal gauge mediation with a gravitino mass in the
eV range that are both calculable and falsifiable.Comment: 31 pages, 4 figures, references added, minor change
- …
