50 research outputs found

    Paternal kin recognition in the high frequency / ultrasonic range in a solitary foraging mammal

    Get PDF
    Background Kin selection is a driving force in the evolution of mammalian social complexity. Recognition of paternal kin using vocalizations occurs in taxa with cohesive, complex social groups. This is the first investigation of paternal kin recognition via vocalizations in a small-brained, solitary foraging mammal, the grey mouse lemur (Microcebus murinus), a frequent model for ancestral primates. We analyzed the high frequency/ultrasonic male advertisement (courtship) call and alarm call. Results Multi-parametric analyses of the calls’ acoustic parameters and discriminant function analyses showed that advertisement calls, but not alarm calls, contain patrilineal signatures. Playback experiments controlling for familiarity showed that females paid more attention to advertisement calls from unrelated males than from their fathers. Reactions to alarm calls from unrelated males and fathers did not differ. Conclusions 1) Findings provide the first evidence of paternal kin recognition via vocalizations in a small-brained, solitarily foraging mammal. 2) High predation, small body size, and dispersed social systems may select for acoustic paternal kin recognition in the high frequency/ultrasonic ranges, thus limiting risks of inbreeding and eavesdropping by predators or conspecific competitors. 3) Paternal kin recognition via vocalizations in mammals is not dependent upon a large brain and high social complexity, but may already have been an integral part of the dispersed social networks from which more complex, kin-based sociality emerged

    Third-party vocal intervention in the proboscis monkey (Nasalis larvatus)

    Get PDF
    Vocal intervention is a triadic social interaction, where a third party responds vocally to a conflict between group members, minimizing the costs of aggression in response to the intervention. Because there is little information on vocal third-party intervention in nonhuman mammals, we investigated whether adult male proboscis monkeys use the bray vocalization as a vocal third-party intervention signal to intervene in intragroup conflicts. First, we audio-recorded 1,811 vocalizations from 17 free-ranging proboscis monkey groups in the Lower Kinabatangan Wildlife Sanctuary, analyzing 378 vocal responses of the adult male to agonistic vocal exchanges (shrieks) of group members. Second, we video- and audio-recorded five habituated groups in the Labuk Bay Proboscis Monkey Sanctuary investigating the context of these vocalizations and the conflict dyads evoking vocal support. We found that adult males of one-male/multifemale groups mainly uttered bray vocalizations, whereas females, immatures, and infants uttered shrieks in intragroup conflicts or in response to other animal species. The adult male uttered significantly more often brays after agonistic shrieks than expected based on the overall occurrence of brays. Brays ended 65% of agonistic conflicts, which were accompanied by vocalizations of the conflict partners and occurred more often after conflicts between females than between offspring. This suggests that the bray functions as a vocal third-party intervention signal for intragroup conflict resolution. We suggest that living in the high canopies of the tropical rainforest might restrict direct access to conflict partners and prevent physical intervention, favoring the evolution of the bray as a third-party vocal intervention signal

    Posture Does Not Matter! Paw Usage and Grasping Paw Preference in a Small-Bodied Rooting Quadrupedal Mammal

    Get PDF
    BACKGROUND: Recent results in birds, marsupials, rodents and nonhuman primates suggest that phylogeny and ecological factors such as body size, diet and postural habit of a species influence limb usage and the direction and strength of limb laterality. To examine to which extent these findings can be generalised to small-bodied rooting quadrupedal mammals, we studied trees shrews (Tupaia belangeri). METHODOLOGY/PRINCIPAL FINDINGS: We established a behavioural test battery for examining paw usage comparable to small-bodied primates and tested 36 Tupaia belangeri. We studied paw usage in a natural foraging situation (simple food grasping task) and measured the influence of varying postural demands (triped, biped, cling, sit) on paw preferences by applying a forced-food grasping task similar to other small-bodied primates. Our findings suggest that rooting tree shrews prefer mouth over paw usage to catch food in a natural foraging situation. Moreover, we demonstrated that despite differences in postural demand, tree shrews show a strong and consistent individual paw preference for grasping across different tasks, but no paw preference at a population level. CONCLUSIONS/SIGNIFICANCE: Tree shrews showed less paw usage than small-bodied quadrupedal and arboreal primates, but the same paw preference. Our results confirm that individual paw preferences remain constant irrespective of postural demand in some small-bodied quadrupedal non primate and primate mammals which do not require fine motoric control for manipulating food items. Our findings suggest that the lack of paw/hand preference for grasping food at a population level is a universal pattern among those species and that the influence of postural demand on manual lateralisation in quadrupeds may have evolved in large-bodied species specialised in fine manipulations of food items

    Sumatran orangutans and a yellow-cheeked crested gibbon know what is where

    No full text
    In their natural habitats orangutans and gibbons have to solve spatial prob-lems to find enough food, which is distributed over large areas and available at different times of the year. Therefore both species should evolve spatial memory skills to remember spatial locations and their content. We conducted 2 studies in a 1900-m2 naturalistic outdoor enclosure. In the 1st study, we hid kiwi pieces in 10 different locations and placed kiwi pieces in a visible location. Individuals of both species approached significantly more food lo-cations in the test condition than in the control condition in which no food was hidden. In the 2nd study, we hid 2 types of food in 10 different locations so that individuals had to remember which food type was where. We hid ba-nanas on trees (banana condition) and grapes under bamboo shrubs (grape condition). We also placed oranges in full view (control condition) to rule out the possibility that finding food may automatically trigger an indiscrimi-nate search. Individuals approached the banana locations more often in the banana than in the other 2 conditions. Some orangutans, but not the gibbon, also approached the grape locations more often in the grape than in the other 2 conditions. Individuals often returned to locations in which they previously found food and rarely revisited locations in the same session. We detected little influence of the food quantity and no influence of the distance to each location on the subjects ’ foraging behavior. KEY WORDS: foraging; gibbon; orangutan; spatial memory
    corecore