67 research outputs found

    Mutational analysis of ribosomal proteins in a cohort of pediatric patients with T-cell acute lymphoblastic leukemia reveals Q123R, a novel mutation in RPL10

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is a subtype of ALL involving the malignant expansion of T-cell progenitors. It is driven by a number of different possible genetic lesions, including mutations in genes encoding for ribosomal proteins (RPs). These are structural constituents of ribosomes, ubiquitous effectors of protein synthesis. Albeit the R98S mutation in RPL10, recurring with a higher frequency among RP mutations, has been extensively studied, less is known about the contribution of mutations occurring in other RPs. Alterations affecting translational machinery may not be well tolerated by cells, and there may be a selective pressure that determines the emergence of mutations with a compensatory effect. To explore this hypothesis, we sequenced the exomes of a cohort of 37 pediatric patients affected by T-ALL, and analyzed them to explore the co-occurrence of mutations in genes involved in ribosome biogenesis (including RPs) and translational control, and in known T-ALL driver genes. We found that some of the mutations in these sub-classes of genes tend to cluster together in different patients, indicating that their co-occurrence may confer some kind of advantage to leukemia cells. In addition, our sequencing highlighted the presence of a novel mutation in RPL10, namely the Q123R, which we found associated with a defect in protein synthesis. Our findings indicate that genetic alterations involving ribosome biogenesis and translational control should be carefully considered in the context of precision medicine in T-ALL

    AluY-mediated germline deletion, duplication and somatic stem cell reversion in <i>UBE2T</i> defines a new subtype of Fanconi anemia

    Get PDF
    Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene.</p

    A study of CP violation in B-+/- -&gt; DK +/- and B-+/- -&gt; D pi(+/-) decays with D -&gt; (KSK +/-)-K-0 pi(-/+) final states

    Get PDF
    A first study of CP violation in the decay modes B±→[KS0K±π∓]Dh±B^\pm\to [K^0_{\rm S} K^\pm \pi^\mp]_D h^\pm and B±→[KS0K∓π±]Dh±B^\pm\to [K^0_{\rm S} K^\mp \pi^\pm]_D h^\pm, where hh labels a KK or π\pi meson and DD labels a D0D^0 or D‟0\overline{D}^0 meson, is performed. The analysis uses the LHCb data set collected in pppp collisions, corresponding to an integrated luminosity of 3 fb−1^{-1}. The analysis is sensitive to the CP-violating CKM phase Îł\gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of Îł\gamma using other decay modes

    Studies of beauty baryon decays to D0ph− and Λ+ch− final states

    Get PDF

    Study of forward Z + jet production in pp collisions at √s=7 TeV

    Get PDF
    A measurement of the Z(→Ό+Ό−)Z(\rightarrow\mu^+\mu^-)+jet production cross-section in pppp collisions at a centre-of-mass energy s=7\sqrt{s} = 7 TeV is presented. The analysis is based on an integrated luminosity of 1.0 fb−11.0\,\text{fb}^{-1} recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction (2.0<η<4.52.0<\eta<4.5). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction.A measurement of the Z(→Ό+Ό−)Z(\rightarrow\mu^+\mu^-)+jet production cross-section in pppp collisions at a centre-of-mass energy s=7\sqrt{s} = 7 TeV is presented. The analysis is based on an integrated luminosity of 1.0 fb−11.0\,\text{fb}^{-1} recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction (2.0<η<4.52.0<\eta<4.5). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction

    Measurement of Upsilon production in collisions at root s=2.76 TeV

    Get PDF
    The production of ΄(1S)\Upsilon(1S), ΄(2S)\Upsilon(2S) and ΄(3S)\Upsilon(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb−1pb^{-1} collected in proton-proton collisions at a centre-of-mass energy of s=2.76\sqrt{s}=2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the ΄\Upsilon transverse momentum and rapidity, over the ranges $p_{\rm T} Upsilon(1S) X) x B(Upsilon(1S) -> mu+mu-) = 1.111 +/- 0.043 +/- 0.044 nb, sigma(pp -> Upsilon(2S) X) x B(Upsilon(2S) -> mu+mu-) = 0.264 +/- 0.023 +/- 0.011 nb, sigma(pp -> Upsilon(3S) X) x B(Upsilon(3S) -> mu+mu-) = 0.159 +/- 0.020 +/- 0.007 nb, where the first uncertainty is statistical and the second systematic

    Negative staining of proteins in polyacrylamide gels with methyl trichloroacetate

    No full text
    This paper describes a new, sensitive (in the nanogram range), and rapid (two-step) technique for the negative staining of proteins in polyacrylamide gels in the presence or absence of sodium dodecyl sulfate. After separation, gels are incubated with 8% methyl trichloroacetate ester in 38% isopropanol and then washed in water to produce a negative image of colorless proteins against an opaque background. The technique allows unmodified proteins to be recovered for biological studies or transblot for amino acid sequence. Finally, owing to the reversibility of the process, gels can be restained after rapid visualization. For these reasons, negative staining with methyl trichloroacetate should become the method of choice for rapid and sensitive staining of proteins prior to further processing, including stable staining with silver ions

    Digenic mutations in severe congenital neutropenia

    No full text
    Severe congenital neutropenia a clinically and genetically heterogeneous disorder. Mutations in different genes have been described as causative for severe neutropenia, e.g. ELANE, HAX1 and G6PC3. Although congenital neutropenia is considered to be a group of monogenic disorders, the phenotypic heterogeneity even within the yet defined genetic subtypes points to additional genetic and/or epigenetic influences on the disease phenotype. We describe congenital neutropenia patients with mutations in two candidate genes each, including 6 novel mutations. Two of them had a heterozygous ELANE mutation combined with a homozygous mutation in G6PC3 or HAX1, respectively. The other 2 patients combined homozygous or compound heterozygous mutations in G6PC3 or HAX1 with a heterozygous mutation in the respective other gene. Our results suggest that digenicity may underlie this disorder of myelopoiesis at least in some congenital neutropenia patients

    Clinical heterogeneity in a family with DKC1 mutation, dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome in first cousins

    No full text
    Dyskeratosis congenita (DC) is an inherited bone marrow failure disorder characterized by mucocutaneous features (skin pigmentation, nail dystrophy and oral leukoplakia), pulmonary fibrosis, hematologic and solid malignancies. Its severe form, recognized as Hoyeraal-Hreidarsson syndrome (HHS), also includes cerebellar hypoplasia, microcephaly, developmental delay and prenatal growth retardation. In literature phenotypic variability among DC patients sharing the same mutation is wellknown. To our knowledge this report describes for the first time a family of DC patients, characterized by a member with features of classic DC and another one with some features of HHS, both with the same mutation in DKC1. Our family confirms again that one mutation can be associated with different phenotypes and different hematological manifestations. It’s possible to speculate that there are likely to be patients who do not clinically fit neatly into either classical DC or HHS, but whose clinical features are due to mutations in DKC1 or in genes responsible for autosomal DC/HHS
    • 

    corecore