600 research outputs found

    Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling

    Get PDF
    Lamins are intermediate filament proteins that assemble into a meshwork underneath the inner nuclear membrane, the nuclear lamina. Mutations in the LMNA gene, encoding lamins A and C, cause a variety of diseases collectively called laminopathies. The disease mechanism for these diverse conditions is not well understood. Since lamins A and C are fundamental determinants of nuclear structure and stability, we tested whether defects in nuclear mechanics could contribute to the disease development, especially in laminopathies affecting mechanically stressed tissue such as muscle. Using skin fibroblasts from laminopathy patients and lamin A/C-deficient mouse embryonic fibroblasts stably expressing a broad panel of laminopathic lamin A mutations, we found that several mutations associated with muscular dystrophy and dilated cardiomyopathy resulted in more deformable nuclei; in contrast, lamin mutants responsible for diseases without muscular phenotypes did not alter nuclear deformability. We confirmed our results in intact muscle tissue, demonstrating that nuclei of transgenic Drosophila melanogaster muscle expressing myopathic lamin mutations deformed more under applied strain than controls. In vivo and in vitro studies indicated that the loss of nuclear stiffness resulted from impaired assembly of mutant lamins into the nuclear lamina. Although only a subset of lamin mutations associated with muscular diseases caused increased nuclear deformability, almost all mutations tested had defects in force transmission between the nucleus and cytoskeleton. In conclusion, our results indicate that although defective nuclear stability may play a role in the development of muscle diseases, other factors, such as impaired nucleo-cytoskeletal coupling, likely contribute to the muscle phenotyp

    The Potential Health Benefits of Polyphenol-Rich Extracts from Cichorium intybus

    Get PDF
    Phytochemicals can exert their bioactivity without reaching the systemic circulation; scarcely absorbed antioxidants might reach the large bowel contributing to protection from oxidative damage-induced gastrointestinal diseases. In the present work, we aimed to study the relationship between potential activity of polyphenol-rich extracts from Cichorium intybus L. and changes in morphological characteristics on Caco-2 cells. Phytochemicals content (carotenoids and flavonoids) and total antioxidant activity of Red Chicory of Treviso and Variegated Chicory of Castelfranco were evaluated. The bioactivity of polyphenol-rich extracts from chicories was studied in in vitro Caco-2 cell monolayers model. Morphological characteristics changes to test the antioxidant and/or prooxidant effect were verified by histological analysis and observed by Electronic Scansion Microscopy (SEM). On Caco-2 cell model, the polyphenols fractions from chicories have indicated a moderate antioxidant behavior until 17 ΌM concentration, while 70 ΌM and 34 ΌM exert cytotoxic effects for Treviso’s and Castelfranco’s Chicory, respectively, highlighted by TEER decreasing, increased permeability, and alteration of epithelium. Our findings support the beneficial effects of these products in counteracting the oxidative stress and cellular damage, induced in vitro on Caco-2 cell model, through interaction with the mucopolysaccharide complexes in the glycocalyx, maintaining in vivo a healthy and effective intestinal barrier

    Bone demineralization and vertebral fractures in endogenous cortisol excess: role of disease etiology and gonadal status

    Get PDF
    INTRODUCTION: The effects of endogenous cortisol (F) excess on bone mass and vertebral fractures have still not been thoroughly investigated. The aim of this cross-sectional case-control study was to investigate factors influencing bone demineralization and vertebral fractures in different conditions of F excess, i.e. Cushing's disease and adrenal and ectopic Cushing's syndrome. MATERIALS AND METHODS: Eighty consecutive patients and 80 controls were prospectively enrolled: 37 patients (21 females) with pituitary ACTH-secreting adenoma, 18 (14 females) with adrenocortical adenoma, 15 (11 females) with adrenal carcinoma of mixed secretion, and 10 (three females) with ectopic ACTH secretion. The groups had similar age. At diagnosis, bone mineral density (BMD) was determined by the dual-energy x-ray absorptiometry technique at the lumbar spine (L1-L4) and femoral neck; vertebral fractures were investigated by standard spinal radiographs. RESULTS: When comparing the groups with different etiology of F excess, the patients with ectopic ACTH secretion had higher F and lower BMD values than the other subgroups. Morning F (P = 0.03) and testosterone levels (P = 0.04) correlated with lumbar BMD. Vertebral fractures were found in 61 (76%) of the patients, were multiple in 52 (85%) of the cases, and clinically evident in 32 (52%). Only multiple fractures were more frequent in patients with ectopic ACTH hypersecretion (P < 0.05). Lumbar spine BMD was the best predictor of vertebral fractures (P < 0.01). Surprisingly, amenorrheic and eumenorrheic women had similar BMD values and fracture prevalence. CONCLUSION: A high prevalence (76%) of vertebral fracture was revealed, regardless of the etiology of the patients' hypercortisolism. The harmful effects of F excess at the spine were partly counterbalanced by the increased androgen production but were not affected by gonadal status in women

    Metalloproteinase-9 contributes to inflammatory glia activation and nigro-striatal pathway degeneration in both mouse and monkey models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism

    Get PDF
    Inflammation is a predominant aspect of neurodegenerative diseases, manifested by glia activation and expression of pro-inflammatory mediators. Studies on animal models of Parkinson’s disease (PD) suggest that sustained neuroinflammation exacerbates degeneration of the dopaminergic (DA) nigro-striatal pathway. Therefore, insights into the inflammatory mechanisms of PD may help the development of novel therapeutic strategies against this disease. As extracellular matrix metalloproteinases (MMPs) could be major players in the progression of Parkinsonism, we investigated, in the substantia nigra and striatum of mice acutely injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), changes in mRNA expression, protein levels, and cell localization of MMP-9. This protease is mainly neuronal, but early after MPTP injection its mRNA and protein levels, as well as the number of MMP-9-expressing microglia and astrocytes, increase concomitantly to a prominent inflammation. Neuroinflammation and MMP-9+ glia begin to decline within 2 weeks, although protein levels remain higher than control, in association with a partial recovery of DA nigro-striatal circuit. Comparable quantitative studies on MMP-9 knock-out mice, show a significant decrease in both glia activation and loss of DA neurons and fibers, with respect to wild-type. Moreover, in a parallel study on chronically MPTP-injected macaques, we observed that perpetuation of inflammation and high levels of MMP-9 are associated to DA neuron loss. Our data suggest that MMP-9 released by injured neurons favors glia activation; glial cells in turn reinforce their reactive state via autocrine MMP-9 release, contributing to nigro-striatal pathway degeneration. Specific modulation of MMP-9 activity may, therefore, be a strategy to ameliorate harmful inflammatory outcomes in Parkinsonism

    Development of machine learning models for fractional flow reserve prediction in angiographically intermediate coronary lesions

    Get PDF
    Background: Fractional flow reserve (FFR) represents the gold standard in guiding the decision to proceed or not with coronary revascularization of angiographically intermediate coronary lesion (AICL). Optical coherence tomography (OCT) allows to carefully characterize coronary plaque morphology and lumen dimensions. Objectives: We sought to develop machine learning (ML) models based on clinical, angiographic and OCT variables for predicting FFR. Methods: Data from a multicenter, international, pooled analysis of individual patient's level data from published studies assessing FFR and OCT on the same target AICL were collected through a dedicated database to train (n = 351) and validate (n = 151) six two‐class supervised ML models employing 25 clinical, angiographic and OCT variables. Results: A total of 502 coronary lesions in 489 patients were included. The AUC of the six ML models ranged from 0.71 to 0.78, whereas the measured F1 score was from 0.70 to 0.75. The ML algorithms showed moderate sensitivity (range: 0.68–0.77) and specificity (range: 0.59–0.69) in detecting patients with a positive or negative FFR. In the sensitivity analysis, using 0.75 as FFR cut‐off, we found a higher AUC (0.78–0.86) and a similar F1 score (range: 0.63–0.76). Specifically, the six ML models showed a higher specificity (0.71–0.84), with a similar sensitivity (0.58–0.80) with respect to 0.80 cut‐off. Conclusions: ML algorithms derived from clinical, angiographic, and OCT parameters can identify patients with a positive or negative FFR
    • 

    corecore