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Abstract

Background: Fractional flow reserve (FFR) represents the gold standard in

guiding the decision to proceed or not with coronary revascularization of

angiographically intermediate coronary lesion (AICL). Optical coherence
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tomography (OCT) allows to carefully characterize coronary plaque morphology

and lumen dimensions.

Objectives: We sought to develop machine learning (ML) models based on clinical,

angiographic and OCT variables for predicting FFR.

Methods: Data from a multicenter, international, pooled analysis of individual

patient's level data from published studies assessing FFR and OCT on the same

target AICL were collected through a dedicated database to train (n = 351) and

validate (n = 151) six two‐class supervised ML models employing 25 clinical,

angiographic and OCT variables.

Results: A total of 502 coronary lesions in 489 patients were included. The AUC

of the six ML models ranged from 0.71 to 0.78, whereas the measured F1 score

was from 0.70 to 0.75. The ML algorithms showed moderate sensitivity (range:

0.68–0.77) and specificity (range: 0.59–0.69) in detecting patients with a

positive or negative FFR. In the sensitivity analysis, using 0.75 as FFR cut‐off,

we found a higher AUC (0.78–0.86) and a similar F1 score (range: 0.63–0.76).

Specifically, the six ML models showed a higher specificity (0.71–0.84), with a

similar sensitivity (0.58–0.80) with respect to 0.80 cut‐off.

Conclusions: ML algorithms derived from clinical, angiographic, and OCT parameters

can identify patients with a positive or negative FFR.
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1 | INTRODUCTION

According to current international guidelines, fractional flow reserve (FFR)

is the gold standard in deciding whether to perform coronary

revascularization in patients with angiographically intermediate coronary

lesions (AICL).1,2 Intravascular imaging with optical coherence tomogra-

phy (OCT) is commonly performed to characterize coronary plaque

morphology (especially the presence of signs of vulnerability) and to guide

the optimization of percutaneous coronary intervention (PCI) results,3–7

especially when facing complex lesions, such as bifurcations.8 Recently, a

randomized clinical trial9 demonstrated that OCT is a valuable option over

FFR in the management of AICL. The association between FFR for

functional assessment and OCT for optimization of PCI could be a perfect

combination. However, in the “real world,” the use of both techniques

during a single procedure would collide with an increase in procedural

costs and time. Machine learning (ML) algorithms allow computers to

learn from data and experience, and to make predictions about previously

unanalyzed variables.10–13 ML models have recently demonstrated

excellent performance in the analysis of cardiovascular multislice

computed‐tomography (MSCT), with the goal of improving outcomes

prediction.14 This is due to their ability to select and weigh individual

imaging features and to identify multidimensional relationship between

them. Classical limitations of building predictive models from traditional

statistical methods are represented by the presence of too many

predictors, nonlinear associations between factors and outcomes, and

multiple interactions between variables. ML could be used to improve

current modeling by making a more accurate and precise predictions for

the outcomes of interest. The aim of the present study was to develop,

on the basis of clinical, angiographic, and OCT parameters, different ML

models capable of classifying AICL into those with a positive FFR (≤0.80)

and those with a negative FFR (>0.80).

2 | METHODS

This study complies with the guidelines for Transparent Reporting of

a Multivariable Prediction Model for Individual Prognosis or Diagno-

sis (TRIPOD)15 (Supporting Information S1: Table 2).

2.1 | Study population

This was a post‐hoc analysis of the multicentric OMEF study

(NCT03573388). Patient data were pooled from studies conducted

at eight centers across Europe (Italy, United Kingdom, Poland,

Netherlands) and Japan, that agreed to data sharing.16–23 Patients

with acute or chronic coronary syndrome and angiographic evidence

of at least one AICL (defined as visual diameter stenosis between
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30% and 80%) in whom both FFR and OCT had been performed were

included. Principal investigators were asked to complete a structured

database by providing a series of anonymized clinical, angiographic,

OCT, and FFR data. Individual study protocols and ethical aspects

have been reported in each study.16–23

2.2 | Quantitative coronary angiography for
coronary lesion assessment

Quantitative coronary angiography (QCA) analyses were performed

offline with validated software on a single, selected 2D end‐diastolic

image frame. Reference vessel diameters were based on the

computer estimation of the original arterial dimensions at the

stenosis site. The following angiographic parameters were calculated

and expressed as absolute values (mm): minimal lumen diameter

(MLD), proximal and distal reference diameter (RD) and lesion length

(LL). Diameter stenosis (DS) was derived from the previously

collected angiographic parameters and expressed as a percentage.

2.3 | Fractional flow reserve

Technical assessment of FFR was performed using different systems

according to the operator's discretion and/or study protocol. After

the placement of a guide catheter at the coronary ostium, a 0.014‐

inch pressure monitoring guidewire was advanced beyond the target

AICL under fluoroscopic examination. Then, FFR was defined as the

lowest ratio of distal coronary pressure divided by aortic pressure

after achievement of hyperemia using intracoronary or endovenous

adenosine according to local practice at each center.24 FFR > 0.80

was defined as “negative,” and in these cases, according to guidelines,

myocardial revascularization was deferred.

2.4 | Optical coherence tomography

Target AICLs where FFR was performed underwent OCT evaluation

(after intracoronary administration of nitroglycerin). The OCT

catheter was advanced to the distal end of the target AICL and the

entire length of the region of interest was scanned. Commercially

available software were used for analyses as reported in the original

studies, and the following parameters were collected: minimum

lumen area (MLA, defined as cross‐sectional area at the smallest

luminal area level), proximal reference lumen area (RLA, defined as

the cross‐section at the frame with largest lumen within 10mm

proximal to MLA and before any major side branch), distal RLA

(defined as the cross‐section at the frame with largest lumen within

10mm distal to MLA and before any major side branch), and mean

RLA (defined as [proximal RLA + distal RLA]/2). Based on these

parameters, percentage of area stenosis (%AS) was calculated using

the following formula: [(mean RLA−MLA)/mean RLA] x 100. Plaque

rupture (i.e., ulceration) was defined as a recess in the plaque

beginning at the luminal‐intimal border. Plaque thrombus included

both red thrombus (intraluminal mass with high backscatter and high

attenuation) and white thrombus (intraluminal mass with high

backscatter and low attenuation). Quantitative and qualitative

parameters were in accordance with the consensus document from

the International Working Group for intravascular OCT (IWG‐IVOCT)

standardization and validation.25

2.5 | Data collection and preprocessing

The variables included in the analysis were: age, gender, smoking,

hypertension, diabetes mellitus, dyslipidemia, previous (>1 month) or

recent (within 1 month) acute coronary syndrome (ACS), previous

PCI and coronary artery bypass grafting (CABG), coronary vessel

evaluated, QCA parameters (proximal and mean RD, LL, MLD, %DS),

and OCT parameters (proximal and distal RLA, LL, MLA, %AS,

thrombus, ulceration, MLA < 2.0 mm2, %AS > 73%). In addition to

the continue variables, the prespecified cut‐off values adopted for

MLA and %AS were derived from the main analysis of the OMEF

study.26 Missing data for variables of interest were analyzed and

categorized as “missing completely at random,” “missing at

random,” and “not missing at random.” Overall, missing values

accounted for 2.9% of all datasets. Variables found to be missing at

random were imputed using a linear or a logistic regression method

for continuous and categorical variables, respectively.27,28 The data

set was randomly split using a 70:30 ratio, whereby the ML

algorithm was trained on 70% of the available cases (training data

set) and tested on the remaining 30% (testing data set). After the

splitting process, the proportion of FFR positive and negative for

the target AICLs was maintained.

2.6 | Model training and validation

Six 2‐class supervised ML decision models, which were selected as the

current and most common predictive model types in the literature, were

used to predict the presence of positive FFR (FFR≤0.80) or negative FFR

(FFR>0.80) for the target AICLs. In particular, the training data set was

used to train the following six ML‐based models: classification and

regression tree (CART),29 k‐nearest neighbor (kNN),30 penalized discrimi-

nant analysis (PDA),31 random forest (RF),32 support vector machines

(SVM),33 and extreme gradient boosting (XGB).34 To ensure model

stability and reduce bias, a repeated 10‐fold cross‐validation was

performed during the training of all ML algorithms. A data set

augmentation technique (Synthetic Minority Oversampling Technique or

SMOTE) was adopted during the training process to generate more

samples for the minority class to correct for class imbalance.35 Random

hyperparameter tuning was performed to maximize the area under the

receiver operating characteristic (ROC) curve.36 The classification

performance of the ML algorithms was measured on the testing data

by comparing accuracy, area under the curve (AUC), sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV), and F1
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score (a standard metric for ML classifiers combining precision and recall).

A positive FFR (≤0.80) was labeled as “positive” class for the classification

algorithms. Next, the results were plotted using ROC curves. As per

sensitivity purpose, we also repeated the same analysis labeling

FFR≤0.75 as positive and FFR>0.75 as negative, and excluding patients

with ACS. The testing data set was used to calculate a permutation

feature importance (PFI) score (a measure of the reduction in model

performance when the value of a single feature is randomly shuffled) that

was used to identify the variables with the greatest impact on model

prediction.37 Specifically, PFI scores were calculated as the difference in

AUC model performance before and after altering a particular indepen-

dent variable.

2.7 | Statistical analysis

Categorical variables were expressed as counts (percentages) and

compared using the χ2 or Fisher's exact test. After assessing data

distribution using the Kolmogorov–Smirnov test, continuous vari-

ables were expressed as mean ± standard deviation or median

(interquartile range) and compared using the independent samples

Student's t‐test or the Mann–Whitney U test, according to the

distribution. The accuracy, AUC, sensitivity, specificity, PPV, NPV,

and F1 scores of the six ML models were measured. Statistical

analyses were performed using the R software for statistical

computing (R version 4.0.1, Foundation for Statistical Computing)

and SPSS v.28.0 (IBM Corp). A value of p < 0.05 was considered to

indicate statistical significance.

3 | RESULTS

3.1 | Baseline characteristics

The final study population comprised a total of 502 AICLs in 489

patients. Baseline patients' characteristics are summarized in Table 1.

The mean age was 65 years, and the clinical presentation was chronic

coronary syndrome in the vast majority of the patients (about 90%).

The target vessel location was left anterior descending artery (LAD) in

311 lesions (62%), left circumflex artery (LCx) in 72 lesions (14%), and

right coronary artery (RCA) in 119 lesions (24%).

3.2 | QCA and OCT parameters

QCA and OCT parameters of AICL stratified according to the FFR values

(≤0.80 or >0.80) are reported in Table 2. At QCA, with respect to those

with negative FFR, target AICLs lesion with FFR≤0.80 were found to

have a significantly greater lesion length (15.2 ±8.8 vs. 12.5 ± 6.0 mm;

p<0.001) and %DS (58.7 ± 12.4 vs. 51.0 ±12.5; p<0.001), whereas

minimum lumen diameter (1.08± 0.37 vs. 1.47 ±0.46mm; p<0.001) and

mean reference diameter (2.65± 0.62 vs. 3.05± 0.73mm; p<0.001)

were significantly smaller. At OCT similar data were observed in the

positive FFR group, with a significantly smaller MLA (1.55 ±0.85 vs.

2.91± 1.64mm; p<0.001), while lesion length (15.0 ± 6.6 vs.

12.7 ± 6.2mm; p<0.001), and % AS (75.5 ± 11.7 vs. 60.8 ± 20.4,

p<0.001) were significantly greater respect to AICLs with negative

FFR. No statistically significant differences were observed in the

prevalence of OCT‐detected ulceration and thrombus between the two

groups.

3.3 | Performance of ML models

The data set was randomly divided into a training data set and a

testing data set consisting of 351 (70%) and 151 (30%) patients,

respectively (Central Illustration– Figure 1). The development of ML

models was performed on the training data set using the 25 available

variables abovementioned. Then, each trained model was applied to

the testing data set to predict the presence of a positive or negative

FFR. Table 3 shows the confusion matrix containing the information

of correct and incorrect predictions of each model compared to the

actual class. Table 4 summarizes the classification performance of

each prediction algorithm. Overall, the AUC of the six ML models

ranged from 0.71 to 0.78, whereas the F1 score was between 0.70

and 0.75. The accuracy was moderate and varied between 0.66 and

0.70, in fact ML algorithms showed a mild higher sensitivity (range:

0.68–0.77) rather than specificity (range: 0.59–0.69) in detecting

patients with positive or negative FFR. Accordingly, PPV measured

was higher (range: 0.71–0.75) than NPV (range: 0.59–0.66). The ROC

curves and the PFI scores of the six ML‐developed models are shown

TABLE 1 Baseline clinical characteristics.

Overall population
(489 patients)

Age, years 65.2 ± 10.4

Male sex 368 (75.3)

Hypertension 322 (65.8)

Dyslipidemia 279 (57.1)

Diabetes mellitus 150 (30.7)

Current smoking 121 (24.7)

Family history 40 (8.2)

Clinical presentation

Acute coronary syndrome 55 (11.2)

Chronic coronary syndrome 434 (88.8)

Previous myocardial infarction 132 (27.0)

Previous percutaneous coronary

interventions

234 (47.9)

Previous coronary artery by‐pass surgery 8 (1.6)

Note: Data are expressed as counts (percentages) or mean ± standard
deviation.
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respectively in Figures 2 and 3. Variables contributing to the model

are displayed in descending order according to their corresponding

importance scores. The absolute magnitude of a PFI score reflects

the impact of a single variable on the overall performance. In the

sensitivity analysis, using 0.75 as FFR cut‐off, we found higher AUC

(0.78–0.86). Specifically, the models showed higher accuracy

(0.72–0.81) and specificity (0.71–0.84), but with a similar sensitivity

(0.58–0.80) respect to 0.80 cut‐off (Table 5; and Supporting

Information S1: Table 3).

Additionally, in the sensitivity analysis excluding patients with

ACS we found an AUC ranging from 0.73 to 0.82 with an accuracy

between 0.64 and 0.76 (Supporting Information S1: Tables 4–5).

4 | DISCUSSION

The assessment of the functional significance of AICLs is recom-

mended by international guidelines when dealing with the decision to

perform coronary revascularization.1,38 On the other hand, OCT is

usually used to characterize coronary morphology by providing

invaluable information about plaque composition and vulnerability. In

recent years, several attempts have been made to implement image‐

based mathematical models to predict the presence of myocardial

ischemia, such as quantitative flow ratio (QFR) derived from 3D‐QCA

computational fluid dynamics models39 or an OCT‐based FFR (OFR)

computational approach.40 Hence, we assumed that OCT may

therefore provide additional insights about the functional significance

of AICL in addition to clinical and angiographic findings. To the best

of our knowledge, this is the first international multicenter study

focused on the development of ML algorithms that integrate clinical,

QCA and OCT data for the prediction of FFR results. In the present

post‐hoc analysis of the OMEF study,26 which includes OCT and FFR

data obtained in the same target AICLs, six ML algorithms were

trained and tested in a multi‐center cohort of 489 patients (502

coronary lesions). The main findings of this study were:

– the feasibility of the application of ML models to identify patients

with a positive or negative FFR, as their classification performance

showed an AUC between 0.71 and 0.78 which increased when

considering 0.75 as cut‐off (AUC range: 0.78–0.86);

– overall, the ML models demonstrated moderate sensitivity (range:

0.68‐0.77) and specificity (range: 0.59–0.69) for 0.80 cut‐off and

a good sensitivity (range: 0.58–0.80) and specificity (range:

0.71–0.84) for 0.75 cut‐off.

The classification performance of the ML algorithms should be

analyzed according to the specific clinical context. Models with either

high sensitivity or high specificity should be preferred depending on

the specific clinical setting. A higher sensitivity of ML models may

allow the identification of patients with a high probability of

hemodynamically significant AICL. In this way, the ML models may

be a supportive tool for physicians to identify patients requiring

revascularization of an AICL, at the expense of possible misclassifica-

tions of patients with functional significant AICLs despite a negative

FFR invasive assessment. Although our model achieved an AUC of

0.71–0.78, indicating moderate to high classification accuracy, there

is potential for further enhancement. Future studies should focus on

refining the developed models to improve their accuracy and further

evaluate their clinical applicability in the decision‐making process.

A PFI score was also calculated using the testing data set to

identify the key variables used in the different ML models.37 Overall,

MLA was confirmed to be the most important predictor of a positive

FFR. In addition, other variables influenced the classification

performance, such as age, dyslipidemia, coronary vessel evaluated,

previous MI, MLA < 2.0 mm2, MLD, proximal RLA and RD, %AS, or %

DS, although heterogeneous results were found between the

developed ML models. Of note, PFI score is calculated to describe

the algorithm used by each ML model. However, the overall

interpretability of the analysis remains uncertain because the mean-

ing of the score is still unclear, and the only reliable information about

each input variable is its ranking. These signals suggest that a

comprehensive assessment of vessel geometry might generate an

accurate prediction of FFR.

TABLE 2 QCA and OCT findings in AICL with positive or
negative FFR.

FFR ≤ 0.80 (289
lesions)

FFR > 0.80 (213
lesions) p‐ value

Lesion location

LAD 199 (68.9) 112 (52.6)

LCx 32 (11.1) 40 (18.8) 0.001

RCA 58 (20.1) 61 (28.6)

QCA parameters

Lesion
length, mm

15.2 ± 8.8 12.5 ± 6.0 <0.001

MLD, mm 1.08 ± 0.37 1.47 ± 0.46 <0.001

Mean RD, mm 2.65 ± 0.62 3.05 ± 0.73 <0.001

%DS 58.7 ± 12.4 51.0 ± 12.5 <0.001

OCT parameters

Lesion
length, mm

15.0 ± 6.6 12.7 ± 6.2 <0.001

MLA, mm2 1.55 ± 0.85 2.91 ± 1.64 <0.001

%AS, % 75.5 ± 11.7 60.8 ± 20.4 <0.001

Ulceration 31 (11.6) 23 (10.8) 0.805

Thrombus 13 (4.5) 10 (4.7) 0.917

Note: Data are expressed as counts (percentages) or mean ± standard
deviation.

Abbreviations: AICL, angiographically‐intermediate coronary lesions;
DS, diameter stenosis; FFR, fractional flow reserve; LAD, left anterior
descending; LCx, left circumflex; MLA, minimum lumen area; MLD,

minimum lumen diameter; OCT, optical coherence tomography; QCA,
quantitative coronary angiography; RCA, right coronary artery; RD,
reference diameter; %AS, percentage area stenosis.
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The present study utilizes data from the multicenter OMEF

study, encompassing patients from five countries across Europe and

Asia. This diverse data set allows for consideration of different clinical

settings and potential racial influences, providing a more comprehen-

sive evaluation of the model's performance. Nonetheless, external

validation in additional populations is crucial to confirm the general-

izability and robustness of these models.

The ischemic threshold for FFR that defines significant ischemia

prompting the decision toward coronary revascularization is still today

matter of debate; hence some have defined the range 0.75–0.80 as a

“gray zone.”41 In a large meta‐analysis revascularization of coronary

stenoses with gray zone FFR showed no advantage over a deferral

strategy in terms of MACE.42 Indeed, in a previous IVUS study

authors developed six ML models for FFR prediction (accuracy

ranging from 0.80 to 0.83), which enhanced predictive power after

the exclusions of lesions with a borderline FFR (0.75–0.80).43 In

this fashion, we performed a sensitivity analysis using a different

FFR cut‐off (≤0.75), which reported a higher accuracy and

specificity, but with a quite similar sensitivity. In addition, we

retained lesions from the gray zone because our main aim was to

evaluate the feasibility of using ML models to predict positive or

negative FFR in clinical practice for all patients tackled with AICL.

Although the results obtained with 0.75 as ischemic cut‐off are

encouraging, we preferred to report them only as additional

analyses because the current cut‐off derived from FAME 2 trial44

used in clinical practice is 0.80 and the present post‐hoc analysis

was not designed to propose the application of a different cut‐off.

An ongoing large, multicentric international intravascular imaging

and pressure wire trial (COMBINE‐INTERVENE trial) will provide

definitive insights into this issue combining a lower ischemic cut‐

off threshold (0.75) with OCT characteristics of plaque vulnerabil-

ity for coronary revascularization.

In the sensitivity analysis excluding patients with ACS we found

an AUC ranging from 0.73 to 0.82 with an accuracy between 0.64

and 0.76. Whether these improved results are due to better

classification of the model outside the context of ACS or to

overfitting related to the reduced number of patients included45,46

is unknown, especially since the main analysis acknowledges the

presence of ACS among the 25 variables. Further studies are needed

to answer this specific question.

CENTRAL ILLUSTRATION. FIGURE 1 Flow chart of the machine learning (ML) methodology. Illustration created with BioRender. com.
[Color figure can be viewed at wileyonlinelibrary.com]
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Recently, computational methods have emerged for deriving FFR

values from OCT, showcasing a good correlation with invasive

FFR.40,47,48 Conversely, ML models developed in this post‐hoc

analysis of the OMEF study exhibit the ability to seamlessly integrate

data from various sources, such as intracoronary imaging, coronary

angiography, and patient clinical characteristics. The clinical applica-

tion of ML models presents a more user‐friendly interface for

interventional cardiologists, also circumventing additional computa-

tional time as it only requires the inference time of the included

variables. Despite the study's limitation of lacking qualitative data

from OCT, this can also be viewed as a strength. The majority of OCT

features utilized in developing the six ML algorithms are effortlessly

and swiftly generated, and many are already assessed by operators,

with new‐generation intracoronary tools automating the generation

of crucial information such as MLA and %AS. In a new era of

personalized medicine, there is a growing demand for more accurate

risk prediction tailored to the patient. The use of ML models

may allow interventional cardiologists to interact with inputs for

individualized prediction, and to explore the impact of specific

features available from angiography in combination with OCT on

ischemia risk.

4.1 | Limitations

Our study has several limitations. First, it was a retrospective study

and therefore subject to potential selection bias. Second, although

qualitative analysis of coronary lesions provides important informa-

tion related to clinical outcomes (e.g., thin‐cap fibroatheroma and/orTABLE 3 Confusion matrices of the ML models (FFR cut‐
off 0.80).

Model Predicted class

Actual class (n = 151)

FFR > 0.80 (n = 64) FFR ≤ 0.80n (n = 87)

CART FFR > 0.80 39 20

FFR ≤ 0.80 25 67

KNN FFR > 0.80 38 22

FFR ≤ 0.80 26 65

PDA FFR > 0.80 44 28

FFR ≤ 0.80 20 59

RF FFR > 0.80 41 22

FFR ≤ 0.80 23 65

SVM FFR > 0.80 38 22

FFR ≤ 0.80 26 65

XGB FFR > 0.80 41 28

FFR ≤ 0.80 23 59

Abbreviations: CART, classification and regression tree; FFR, fractional
flow reserve; kNN, k‐ nearest neighbor; ML, machine learning; PDA,
penalized discriminant analysis; RF, random forest; SVM, support vector

machine; XGB, extreme gradient boosting.

TABLE 4 Classification performance of the ML models (FFR cut‐off 0.80).

Model AUC F1 score Accuracy Sensitivity Specificity PPV NPV

CART 0.71 0.75 0.70 0.77 0.61 0.73 0.66

KNN 0.73 0.73 0.68 0.75 0.60 0.71 0.63

PDA 0.75 0.71 0.68 0.68 0.69 0.75 0.61

RF 0.78 0.74 0.70 0.75 0.64 0.74 0.65

SVM 0.74 0.73 0.68 0.75 0.59 0.71 0.63

XGB 0.75 0.70 0.66 0.68 0.64 0.72 0.59

Abbreviations: AUC, area under the curve; CART, classification and regression tree; kNN, k‐ nearest neighbor; NPV, negative predictive value; PDA,
penalized discriminant analysis; PPV, positive predictive value; RF, random forest; SVM, support vector machine; XGB, extreme gradient boosting.

F IGURE 2 ROC curves showing the accuracy in the prediction of
a positive or negative FFR. The diagonal line (black) represents the
identity line (no discrimination line). CART, classification and
regression tree; kNN, k‐ nearest neighbor; PDA, penalized
discriminant analysis; RF, random forest; SVM, support vector
machine; XGB, extreme gradient boosting. [Color figure can be
viewed at wileyonlinelibrary.com]
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macrophage infiltration), we did not include these parameters in the

analysis because of a lack of data from the original database. Further

studies will be needed to address these important features. Third, the

lack of transparency in the analysis could be associated with a

difficult interpretation of the process, as previously described.49

Predictions models generated by the ML algorithm are based on

multiple layers of analysis, but the specific process is not directly

accessible and the effects of each variable and the relationship

between them cannot be presented in a clear format. In particular,

ML does not generate measures of the effect size of individual

variables, as instead defined by the odds ratio of a multivariable

logistic regression model. Notably, the absolute value of the PFI score

does not give information regarding the real impact of the model

prediction, but it can only be used to give a ranking between variables

in terms of importance.37,50,51 Further research is needed to validate

the clinical utility of these scores and to develop more interpretable

models or supplementary tools to aid clinicians in utilizing ML insights

effectively. ML algorithms can identify complex patterns of nonlinear

combinations of the input variables to improve classification

performance. However, future studies should also focus on a better

categorization of the included variables to improve the interpretabil-

ity of these algorithms. Fourth, another limitation of our study is the

higher prevalence of LAD intermediate lesions, which may limit the

generalizability of our results to lesions located in the RCA and LCx

F IGURE 3 Permutation feature importance scores of the six ML models. Variables are displayed in descending order according to their
corresponding importance score. ACS, acute coronary syndrome; CABG, coronary artery by‐pass grafting; CART, classification and regression
tree; kNN, k‐nearest neighbor; MI, myocardial infarction; MLA, minimum lumen area; MLD, minimum lumen diameter; OCT‐LL; optical
coherence tomography lesion length; PCI, percutaneous coronary intervention; PDA, penalized discriminant analysis; QCA‐LL, quantitative
coronary angiography lesion length; RD, reference diameter; RF, random forest; SVM, support vector machine; XGB, extreme gradient boosting;
%AS, percentage area stenosis; %DS, percentage diameter stenosis. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Classification performance of the ML models (FFR cut‐off 0.75).

Model AUC F1 score Accuracy Sensitivity Specificity PPV NPV

CART 0.78 0.66 0.72 0.74 0.71 0.59 0.83

KNN 0.84 0.63 0.75 0.58 0.84 0.68 0.78

PDA 0.85 0.74 0.79 0.84 0.76 0.67 0.89

RF 0.86 0.76 0.81 0.80 0.82 0.72 0.88

SVM 0.81 0.65 0.75 0.64 0.82 0.67 0.80

XGB 0.85 0.71 0.78 0.74 0.80 0.68 0.85

Abbreviations: AUC, area under the curve; CART, classification and regression tree; kNN, k‐ nearest neighbor; NPV, negative predictive value; PDA,
penalized discriminant analysis; PPV, positive predictive value; RF, random forest; SVM, support vector machine; XGB, extreme gradient boosting.
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arteries. Fifth, the lack of external validation is a limitation of the

present analysis, and future studies should focus on validating these

findings in diverse clinical environments to ensure their broad

applicability and reliability in clinical practice.

A final important limitation of this post‐hoc analysis of the OMEF

study is that binary classifiers cannot be translated into continuous

hemodynamic indexes, thereby reducing the information provided by

these variables, and potentially underestimating the accuracy of the

developed models.

5 | CONCLUSIONS

The observations collected in this post‐hoc analysis of the OMEF

collaborative study suggest that machine learning‐derived algorithms

based on clinical, angiographic, and OCT parameters can identify

patients with a positive or negative FFR. These preliminary findings

suggest that ML algorithms might allow the selection of patients with

positive or negative FFR without the need for an invasive

intracoronary functional assessment. Appropriately designed pro-

spective studies with a larger sample size are warranted to further

determine FFR prediction.

ACKNOWLEDGMENTS

BioRender platform and templates were used for creating the central

illustration. The study has been partially supported by Abbott in the

organization phase. The company has been not involved in the study

conduction nor in results interpretation. Open access publishing

facilitated by Universita Cattolica del Sacro Cuore, as part of the

Wiley ‐ CRUI‐CARE agreement.

CONFLICT OF INTEREST STATEMENT

Marco Lombardi is supported by a grant from Fondazione Enrico ed

Enrica Sovena (Rome, Italy). Rocco Vergallo received speaker fees

from Abbott Vascular and Terumo. Francesco Bianchini receives a

research grant from Abbott Vascular. Tomasz Pawlowski received a

speaker fee from Abbott Vascular, Philips IGT. Antonio Maria Leone

is an advisor for Abbott Vascular and Bracco Imaging and received

speaking honoraria from Abbott Vascular, Medtronic and Abiomed in

the past. Jonathan Hill received speaker fees, honoraria and

consulting fees from Abbott Vascular, Abiomed, Boston Scientific,

Shockwave, and Equity Shockwave. Giovanni Luigi De Maria received

a speaker fee from Abbott Vascular, consultancy fees from Miracor

Medical SA, and a research grant from Abbott Vascular, Philips,

Medtronic, Terumo, Opsens and Miracor Medical SA. Carlo Trani and

Francesco Burzotta received speakers' fees from Abbott Vascular,

Abiomed, Medtronic and Terumo. The other authors have no conflict

of interest to disclose in relation to the present manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on

request from the corresponding author. The data are not publicly

available due to privacy or ethical restrictions.

ORCID

Marco Lombardi http://orcid.org/0000-0002-4045-2859

Francesco Bianchini http://orcid.org/0000-0001-9043-6462

Tsunekazu Kakuta http://orcid.org/0000-0002-4004-5292

Tomasz Pawlowski http://orcid.org/0000-0002-0827-6373

Antonio M. Leone https://orcid.org/0000-0002-1276-9883

Pierfrancesco Agostoni http://orcid.org/0000-0002-1505-9369

Giovanni L. De Maria https://orcid.org/0000-0003-3572-1855

Tomasz Roleder http://orcid.org/0000-0002-1370-7369

Carlo Trani http://orcid.org/0000-0001-9777-013X

REFERENCES

1. Writing Committee Members, Tamis‐Holland JE, Lawton, JS,
Bangalore S, et al. 2021 ACC/AHA/SCAI guideline for coronary
artery revascularization. J Am Coll Cardiol. 2022;79(2):e21‐e129.
doi:10.1016/j.jacc.2021.09.006

2. Neumann FJ, Sousa‐Uva M. Ten commandments for the 2018 ESC/

EACTS guidelines on myocardial revascularization. Eur Heart J.
2019;40(2):79‐80. doi:10.1093/eurheartj/ehy855

3. Wijns W, Shite J, Jones MR, et al. Optical coherence tomography
imaging during percutaneous coronary intervention impacts physi-
cian decision‐making: ILUMIEN I study. Eur Heart J. 2015;36(47):
3346‐3355. doi:10.1093/eurheartj/ehv367

4. Maehara A, Ben‐Yehuda O, Ali Z, et al. Comparison of stent
expansion guided by optical coherence tomography versus intra-

vascular ultrasound: the ILUMIEN II study (Observational Study of
Optical Coherence Tomography [OCT] in Patients Undergoing
Fractional Flow Reserve [FFR] and Percutaneous Coronary Inter-
vention). JACC. Cardiovasc Interv. 2015;8(13):1704‐1714. doi:10.
1016/j.jcin.2015.07.024

5. Ali ZA, Maehara A, Généreux P, et al. Optical coherence tomography

compared with intravascular ultrasound and with angiography
to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI):
a randomised controlled trial. The Lancet. 2016;388(10060):
2618‐2628. doi:10.1016/S0140-6736(16)31922-5

6. Jones DA, Rathod KS, Koganti S, et al. Angiography alone versus

Angiography Plus optical Coherence Tomography to guide Per-
cutaneous Coronary Intervention. JACC: Cardiovasc Interv. 2018;
11(14):1313‐1321. doi:10.1016/j.jcin.2018.01.274

7. Burzotta F, Trani C. Intracoronary imaging. Circ Cardiovasc Interv.

2018;11(11):e007461. doi:10.1161/CIRCINTERVENTIONS.118.
007461

8. Holm NR, Andreasen LN, Neghabat O, et al. OCT or angiography
guidance for PCI in complex bifurcation lesions. N Engl J Med.
2023;389(16):1477‐1487. doi:10.1056/NEJMoa2307770

9. Burzotta F, Leone AM, Aurigemma C, et al. Fractional flow reserve
or optical coherence tomography to guide management of angio-
graphically intermediate coronary stenosis. JACC: Cardiovasc Interv.
2020;13(1):49‐58. doi:10.1016/j.jcin.2019.09.034

10. Obermeyer Z, Emanuel EJ. Predicting the future ‐ big data, machine
learning, and clinical Medicine. N Engl J Med. 2016;375(13):
1216‐1219. doi:10.1056/NEJMp1606181

11. Chen JH, Asch SM. Machine learning and prediction in medicine ‐
beyond the peak of inflated expectations. N Engl J Med.
2017;376(26):2507‐2509. doi:10.1056/NEJMp1702071

12. Davenport T, Kalakota R. The potential for artificial intelligence in

healthcare. Future Hosp J. 2019;6(2):94‐98. doi:10.7861/futurehosp.
6-2-94

13. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat
Biomed Eng. 2018;2(10):719‐731. doi:10.1038/s41551-018-0305-z

14. Lin A, Kolossváry M, Motwani M, et al. Artificial intelligence

in cardiovascular CT: current status and future implications.

LOMBARDI ET AL. | 9

http://orcid.org/0000-0002-4045-2859
http://orcid.org/0000-0001-9043-6462
http://orcid.org/0000-0002-4004-5292
http://orcid.org/0000-0002-0827-6373
https://orcid.org/0000-0002-1276-9883
http://orcid.org/0000-0002-1505-9369
https://orcid.org/0000-0003-3572-1855
http://orcid.org/0000-0002-1370-7369
http://orcid.org/0000-0001-9777-013X
https://doi.org/10.1016/j.jacc.2021.09.006
https://doi.org/10.1093/eurheartj/ehy855
https://doi.org/10.1093/eurheartj/ehv367
https://doi.org/10.1016/j.jcin.2015.07.024
https://doi.org/10.1016/j.jcin.2015.07.024
https://doi.org/10.1016/S0140-6736(16)31922-5
https://doi.org/10.1016/j.jcin.2018.01.274
https://doi.org/10.1161/CIRCINTERVENTIONS.118.007461
https://doi.org/10.1161/CIRCINTERVENTIONS.118.007461
https://doi.org/10.1056/NEJMoa2307770
https://doi.org/10.1016/j.jcin.2019.09.034
https://doi.org/10.1056/NEJMp1606181
https://doi.org/10.1056/NEJMp1702071
https://doi.org/10.7861/futurehosp.6-2-94
https://doi.org/10.7861/futurehosp.6-2-94
https://doi.org/10.1038/s41551-018-0305-z


J Cardiovasc Comput Tomogr. 2021;15(6):462‐469. doi:10.1016/j.
jcct.2021.03.006

15. Moons KGM, Altman DG, Reitsma JB, et al. Transparent reporting of
a multivariable prediction model for individual prognosis or diagnosis

(TRIPOD): explanation and elaboration. Ann Intern Med. 2015;
162(1):W1‐W73. doi:10.7326/M14-0698

16. Pawlowski T, Prati F, Kulawik T, Ficarra E, Bil J, Gil R. Optical
coherence tomography criteria for defining functional severity of
intermediate lesions: a comparative study with FFR. Int J Cardiovasc

Imaging. 2013;29(8):1685‐1691. doi:10.1007/s10554-013-0283-x
17. Biały D, Wawrzyńska M, Arkowski J, et al. Multimodality imaging of

intermediate lesions: data from FFR, OCT, NIRS‐IVUS. Cardiol J.
2013;25(2):196‐202. doi:10.5603/CJ.a2017.0082

18. Burzotta F, Nerla R, Hill J, et al. Correlation between frequency‐
domain optical coherence tomography and fractional flow reserve in
angiographically‐intermediate coronary lesions. Int J Cardiol.
2018;253:55‐60. doi:10.1016/j.ijcard.2017.10.011

19. Wolfrum M, De Maria GL, Benenati S, et al. What are the causes of a
suboptimal FFR after coronary stent deployment? insights from a

consecutive series using OCT imaging. EuroIntervention. 2018;
14(12):e1324‐e1331. doi:10.4244/EIJ-D-18-00071

20. Paraggio L, Burzotta F, Aurigemma C, et al. Trends and outcomes of
optical coherence tomography use: 877 patients single‐center
experience. Cardiovasc Revasc Med. 2019;20(4):303‐310. doi:10.
1016/j.carrev.2018.12.017

21. D'Ascenzo F, Iannaccone M, De Filippo O, et al. Optical coherence
tomography compared with fractional flow reserve guided approach
in acute coronary syndromes: a propensity matched analysis. Int

J Cardiol. 2017;244:54‐58. doi:10.1016/j.ijcard.2017.05.108
22. Usui E, Yonetsu T, Kanaji Y, et al. Optical coherence tomography‐

defined plaque vulnerability in relation to functional stenosis
severity and microvascular dysfunction. JACC: Cardiovasc Interv.
2018;11(20):2058‐2068. doi:10.1016/j.jcin.2018.07.012

23. Belkacemi A, Stella PR, Ali DS, et al. Diagnostic accuracy of optical
coherence tomography parameters in predicting in‐stent hemo-
dynamic severe coronary lesions: validation against fractional flow
reserve. Int J Cardiol. 2013;168(4):4209‐4213. doi:10.1016/j.ijcard.
2013.07.178

24. Leone AM, Porto I, De Caterina AR, et al. Maximal hyperemia in the
assessment of fractional flow reserve. JACC: Cardiovasc Interv.

2012;5(4):402‐408. doi:10.1016/j.jcin.2011.12.014
25. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for

acquisition, measurement, and reporting of intravascular optical
coherence tomography studies. J Am Coll Cardiol. 2012;59(12):
1058‐1072. doi:10.1016/j.jacc.2011.09.079

26. Vergallo R, Lombardi M, Kakuta T, et al. Optical coherence
tomography measures PrEdicting fractional flow reserve: the OMEF

study. J Soc Cardiovascular Angiogr Interven. 2024;3:101288. doi:10.
1016/j.jscai.2023.101288

27. Pedersen A, Mikkelsen E, Cronin‐Fenton D, et al. Missing data and
multiple imputation in clinical epidemiological research. Clin

Epidemiol. 2017;9:157‐166. doi:10.2147/CLEP.S129785
28. Graham JW. Missing data analysis: making it work in the real world.

Annu Rev Psychol. 2009;60:549‐576. doi:10.1146/annurev.psych.58.
110405.085530

29. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification And

Regression Trees. Routledge; 2017. doi:10.1201/9781315139470

30. Dudani SA. The Distance‐Weighted k‐Nearest‐Neighbor rule. IEEE
Trans Syst Man Cybern. 1976;SMC‐6(4):325‐327. doi:10.1109/
TSMC.1976.5408784

31. Hastie T, Buja A, Tibshirani R. Penalized discriminant analysis. Ann

Math Stat. 1995;23(1):73‐102. doi:10.1214/aos/1176324456
32. Breiman L. Random forests. machine learning. Mach Learn.

2001;45(1):5‐32. doi:10.1023/A:1010933404324

33. Noble WS. What is a support vector machine? Nat Biotechnol.
2006;24(12):1565‐1567. doi:10.1038/nbt1206-1565

34. Friedman JH. Greedy function approximation: a gradient boosting
machine. Ann Stat. 2001;29(5):1189‐1232. doi:10.1214/aos/

1013203451
35. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE:

synthetic minority over‐sampling technique. J Artif Intell. 2002;16:
321‐357. doi:10.1613/jair.953

36. Probst P, Wright MN, Boulesteix AL. Hyperparameters and tuning

strategies for random forest. Wires Data Min Knowl Discov. 2019;

9(3):e1301. doi:10.1002/widm.1301
37. Altmann A, Toloşi L, Sander O, Lengauer T. Permutation importance: a

corrected feature importance measure. Bioinformatics. 2010;26(10):
1340‐1347. doi:10.1093/bioinformatics/btq134

38. Neumann FJ, Sousa‐Uva M, Ahlsson A, et al. 2018 ESC/EACTS
guidelines on myocardial revascularization. EuroIntervention. 2019;14
(14):1435‐1534. doi:10.4244/EIJY19M01_01

39. Papafaklis MI, Muramatsu T, Ishibashi Y, et al. Fast virtual functional
assessment of intermediate coronary lesions using routine angio-

graphic data and blood flow simulation in humans: comparison with
pressure wire—fractional flow reserve. EuroIntervention. 2014;10(5):
574‐583. doi:10.4244/EIJY14M07_01

40. Yu W, Huang J, Jia D, et al. Diagnostic accuracy of intracoronary

optical coherence tomography‐derived fractional flow reserve for
assessment of coronary stenosis severity. EuroIntervention. 2019;
15(2):189‐197. doi:10.4244/EIJ-D-19-00182

41. Agarwal SK, Kasula S, Edupuganti MM, et al. Clinical Decision‐
Making for the hemodynamic “gray zone” (FFR 0.75‐0.80) and long‐
Term outcomes. J Invasive Cardiol. 2017;29(11):371‐376.

42. Andreou C, Zimmermann FM, Tonino PAL, et al. Optimal
treatment strategy for coronary artery stenoses with grey zone
fractional flow reserve values. A systematic review and meta‐
analysis. Cardiovasc Revasc Med. 2020;21(3):392‐397. doi:10.

1016/j.carrev.2019.05.018
43. Lee JG, Ko J, Hae H, et al. Intravascular ultrasound‐based machine

learning for predicting fractional flow reserve in intermediate
coronary artery lesions. Atherosclerosis. 2020;292:171‐177. doi:10.
1016/j.atherosclerosis.2019.10.022

44. De Bruyne B, Pijls NHJ, Kalesan B, et al. Fractional flow
reserve–guided PCI versus medical therapy in stable coronary
disease. N Engl J Med. 2012;367(11):991‐1001. doi:10.1056/
NEJMoa1205361

45. Ying X. An overview of overfitting and its solutions. J Phys: Conf Ser.
2019;1168(2):022022. doi:10.1088/1742-6596/1168/2/022022

46. Cawley GC, Talbot NLC. On over‐fitting in model selection and
subsequent selection bias in performance evaluation. J Mach Learn

Res. 2010;11:2079‐2107.
47. Ha J, Kim JS, Lim J, et al. Assessing computational fractional flow

reserve from optical coherence tomography in patients with
intermediate coronary stenosis in the left anterior descending
artery. Circ Cardiovasc Interv. 2016;9(8):e003613. doi:10.1161/
CIRCINTERVENTIONS.116.003613

48. Huang J, Emori H, Ding D, et al. Diagnostic performance of intracoronary
optical coherence tomography‐based versus angiography‐based frac-
tional flow reserve for the evaluation of coronary lesions.
EuroIntervention. 2020;16(7):568‐576. doi:10.4244/EIJ-D-19-01034

49. Shew M, New J, Bur AM. Machine learning to predict delays in

adjuvant radiation following surgery for head and neck cancer.
Otolaryngol Head Neck Surg. 2019;160(6):1058‐1064. doi:10.1177/
0194599818823200

50. Huynh‐Thu VA, Saeys Y, Wehenkel L, Geurts P. Statistical

interpretation of machine learning‐based feature importance scores
for biomarker discovery. Bioinformatics. 2012;28(13):1766‐1774.
doi:10.1093/bioinformatics/bts238

10 | LOMBARDI ET AL.

https://doi.org/10.1016/j.jcct.2021.03.006
https://doi.org/10.1016/j.jcct.2021.03.006
https://doi.org/10.7326/M14-0698
https://doi.org/10.1007/s10554-013-0283-x
https://doi.org/10.5603/CJ.a2017.0082
https://doi.org/10.1016/j.ijcard.2017.10.011
https://doi.org/10.4244/EIJ-D-18-00071
https://doi.org/10.1016/j.carrev.2018.12.017
https://doi.org/10.1016/j.carrev.2018.12.017
https://doi.org/10.1016/j.ijcard.2017.05.108
https://doi.org/10.1016/j.jcin.2018.07.012
https://doi.org/10.1016/j.ijcard.2013.07.178
https://doi.org/10.1016/j.ijcard.2013.07.178
https://doi.org/10.1016/j.jcin.2011.12.014
https://doi.org/10.1016/j.jacc.2011.09.079
https://doi.org/10.1016/j.jscai.2023.101288
https://doi.org/10.1016/j.jscai.2023.101288
https://doi.org/10.2147/CLEP.S129785
https://doi.org/10.1146/annurev.psych.58.110405.085530
https://doi.org/10.1146/annurev.psych.58.110405.085530
https://doi.org/10.1201/9781315139470
https://doi.org/10.1109/TSMC.1976.5408784
https://doi.org/10.1109/TSMC.1976.5408784
https://doi.org/10.1214/aos/1176324456
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1613/jair.953
https://doi.org/10.1002/widm.1301
https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.4244/EIJY19M01_01
https://doi.org/10.4244/EIJY14M07_01
https://doi.org/10.4244/EIJ-D-19-00182
https://doi.org/10.1016/j.carrev.2019.05.018
https://doi.org/10.1016/j.carrev.2019.05.018
https://doi.org/10.1016/j.atherosclerosis.2019.10.022
https://doi.org/10.1016/j.atherosclerosis.2019.10.022
https://doi.org/10.1056/NEJMoa1205361
https://doi.org/10.1056/NEJMoa1205361
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1161/CIRCINTERVENTIONS.116.003613
https://doi.org/10.1161/CIRCINTERVENTIONS.116.003613
https://doi.org/10.4244/EIJ-D-19-01034
https://doi.org/10.1177/0194599818823200
https://doi.org/10.1177/0194599818823200
https://doi.org/10.1093/bioinformatics/bts238


51. Mi X, Zou B, Zou F, Hu J. Permutation‐based identification of important
biomarkers for complex diseases via machine learning models. Nat
Commun. 2021;12(1):3008. doi:10.1038/s41467-021-22756-2

SUPPORTING INFORMATION

Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: Lombardi M, Vergallo R, Costantino

A, et al. Development of machine learning models for

fractional flow reserve prediction in angiographically

intermediate coronary lesions. Catheter Cardiovasc Interv.

2024;1‐11. doi:10.1002/ccd.31167

LOMBARDI ET AL. | 11

https://doi.org/10.1038/s41467-021-22756-2
https://doi.org/10.1002/ccd.31167

	Development of machine learning models for fractional flow reserve prediction in angiographically intermediate coronary lesions
	1 INTRODUCTION
	2 METHODS
	2.1 Study population
	2.2 Quantitative coronary angiography for coronary lesion assessment
	2.3 Fractional flow reserve
	2.4 Optical coherence tomography
	2.5 Data collection and preprocessing
	2.6 Model training and validation
	2.7 Statistical analysis

	3 RESULTS
	3.1 Baseline characteristics
	3.2 QCA and OCT parameters
	3.3 Performance of ML models

	4 DISCUSSION
	4.1 Limitations

	5 CONCLUSIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION




