2,563 research outputs found

    Post-pandemic Recommendations: COVID-19 Continuity of Court Operations During a Public Health Emergency Workgroup

    Get PDF
    In this report, the COVID-19 Continuity of Court Operations During a Public Health Emergency Workgroup (Plan B Workgroup) makes recommendations about best practices and technologies that should be retained or adapted post-pandemic. The recommendations in this final Plan B Workgroup whitepaper are based on experience and feedback from Arizona’s courts addressing pandemic and post-pandemic practices. Although the original report, issued on June 2, 2021, included a May 2021 Survey of Arizona’s Courts, this updated report also includes information from a July 2021 State Bar of Arizona Survey and a September 2021 State of Arizona Public Opinion Survey addressing those practices. The workgroup’s findings and recommendations, which remain unchanged, can be summarized in five major categories: (1) Increasing Access to Justice, (2) Expanding Use of Technology, (3) Jury and Trial Management, (4) Communication Strategies and Disaster Preparedness, and (5) Health, Safety, and Security Protocols

    Biophysical assay for tethered signaling reactions reveals tether-controlled activity for the phosphatase SHP-1

    Get PDF
    Tethered enzymatic reactions are ubiquitous in signaling networks but are poorly understood. A previously unreported mathematical analysis is established for tethered signaling reactions in surface plasmon resonance (SPR). Applying the method to the phosphatase SHP-1 interacting with a phosphorylated tether corresponding to an immune receptor cytoplasmic tail provides five biophysical/biochemical constants from a single SPR experiment: two binding rates, two catalytic rates, and a reach parameter. Tether binding increases the activity of SHP-1 by 900-fold through a binding-induced allosteric activation (20-fold) and a more significant increase in local substrate concentration (45-fold). The reach parameter indicates that this local substrate concentration is exquisitely sensitive to receptor clustering. We further show that truncation of the tether leads not only to a lower reach but also to lower binding and catalysis. This work establishes a new framework for studying tethered signaling processes and highlights the tether as a control parameter in clustered receptor signaling

    67/10/25 Brief of Attorney General of the State of New York as Amicus Curiae in Support of Appellees

    Get PDF
    New York Attorney General Amicus Curiae brief argues that police should be able to stop and question suspects whom they reasonably believe have or are planning to commit a felony

    67/10/25 Brief of Attorney General of the State of New York as Amicus Curiae in Support of Appellees

    Get PDF
    New York Attorney General Amicus Curiae brief argues that police should be able to stop and question suspects whom they reasonably believe have or are planning to commit a felony

    A millimeter-wave kinetic inductance detector camera for long-range imaging through optical obscurants

    Get PDF
    Millimeter-wave imaging provides a promising option for long-range target detection through optical obscurants such as fog, which often occur in marine environments. Given this motivation, we are currently developing a 150 GHz polarization-sensitive imager using a relatively new type of superconducting pair-breaking detector, the kinetic inductance detector (KID). This imager will be paired with a 1.5 m telescope to obtain an angular resolution of 0.09° over a 3.5° field of view using 3,840 KIDs. We have fully characterized a prototype KID array, which shows excellent performance with noise strongly limited by the irreducible fluctuations from the ambient temperature background. Full-scale KID arrays are now being fabricated and characterized for a planned demonstration in a maritime environment later this year

    The Kolmogorov-Smirnov test and its use for the identification of fireball fragmentation

    Full text link
    We propose an application of the Kolmogorov-Smirnov test for rapidity distributions of individual events in ultrarelativistic heavy ion collisions. The test is particularly suitable to recognise non-statistical differences between the events. Thus when applied to a narrow centrality class it could indicate differences between events which would not be expected if all events evolve according to the same scenario. In particular, as an example we assume here a possible fragmentation of the fireball into smaller pieces at the quark/hadron phase transition. Quantitative studies are performed with a Monte Carlo model capable of simulating such a distribution of hadrons. We conclude that the Kolmogorov-Smirnov test is a very powerful tool for the identification of the fragmentation process.Comment: 9 pages, 10 figure

    Bespoke Biomolecular Wires for Transmembrane Electron Transfer: Spontaneous Assembly of a Functionalized Multiheme Electron Conduit.

    Get PDF
    Shewanella oneidensis exchanges electrons between cellular metabolism and external redox partners in a process that attracts much attention for production of green electricity (microbial fuel cells) and chemicals (microbial electrosynthesis). A critical component of this pathway is the outer membrane spanning MTR complex, a biomolecular wire formed of the MtrA, MtrB, and MtrC proteins. MtrA and MtrC are decaheme cytochromes that form a chain of close-packed hemes to define an electron transfer pathway of 185 Å. MtrA is wrapped inside MtrB for solubility across the outer membrane lipid bilayer; MtrC sits outside the cell for electron exchange with external redox partners. Here, we demonstrate tight and spontaneous in vitro association of MtrAB with separately purified MtrC. The resulting complex is comparable with the MTR complex naturally assembled by Shewanella in terms of both its structure and rates of electron transfer across a lipid bilayer. Our findings reveal the potential for building bespoke electron conduits where MtrAB combines with chemically modified MtrC, in this case, labeled with a Ru-dye that enables light-triggered electron injection into the MtrC heme chain
    corecore