10 research outputs found

    Una propuesta para aprender a argumentar en geometría con alumnos de segundo año del nivel secundario

    Get PDF
    El presente informe expone la experiencia de las autoras durante la práctica profesional docente realizada en dos cursos de 2° año en un colegio de la Ciudad de Córdoba. Los contenidos abordados corresponden a la unidad de Geometría: Ángulos y Triángulos. A lo largo de este informe, el lector podrá encontrar una descripción de aspectos generales sobre la institución, los cursos asignados, los estudiantes y la planificación propuesta. Llegando al final, el lector se podrá encontrar con el análisis de una actividad que permite a los estudiantes el paso por las acciones de visualizar, explicar, conjeturar, argumentar y demostrar, junto con el análisis del rol que cumplen las TIC en este proceso.This report describes an experience about our professional teaching training that occurred in two 2nd year classrooms at a secondary school, situated in the city of Cordoba. The taught topics belongs to a Geometry Unit, that is, angles and triangles. In this report, the reader will encounter a brief description of the school institution and the assigned classrooms, students´ semblance, and the teaching proposal. Additionally, we analyze an activity designed to promote activities of visualization, explaining, conjecturing, and proving, in the students. The role of ICTs in these activities completes our presentation

    PluriBAC: a versatile baculovirus-based modular system to express heterologous genes in different biotechnological platforms

    Get PDF
    Baculoviruses are insect-specific pathogens widely used in biotechnology. In particular, the Autographa californica nucleopolyhedrovirus (AcMNPV) has been exploited as a platform for bio-inputs production. This is why the improvement of the technologies used for the production of recombinant baculoviruses takes on particular relevance. To achieve this goal, we developed a highly versatile baculoviral transfer vector generation system called PluriBAC. The PluriBAC system consists of three insert entry levels using Golden Gate assembly technology. The wide availability of vectors and sticky ends allows enough versatility to combine more than four different promoters, genes of interest, and terminator sequences. Here, we report not only the rational design of the PluriBAC system but also its use for the generation of baculoviral reporter vectors applied to different fields of biotechnology. We demonstrated that recombinant AcMNPV baculoviruses generated with the PluriBAC system were capable of infecting Spodoptera frugiperda larvae. On the other hand, we found that the recombinant budded virions (BV) generated using our system were capable of transducing different types of tumor and normal cells both in vitro and in vivo. Our findings suggest that the PluriBAC system could constitute a versatile tool for the generation of insecticide and gene therapy vectors.Instituto de Biotecnología y Biología Molecula

    Mitochondrial peptide humanin facilitates chemoresistance in glioblastoma cells

    Get PDF
    Humanin (HN) is a mitochondrial-derived peptide with robust cytoprotective effects in many cell types. Although the administration of HN analogs has been proposed to treat degenerative diseases, its role in the pathogenesis of cancer is poorly understood. Here, we evaluated whether HN affects the chemosensitivity of glioblastoma (GBM) cells. We found that chemotherapy upregulated HN expression in GBM cell lines and primary cultures derived from GBM biopsies. An HN analog (HNGF6A) boosted chemoresistance, increased the migration of GBM cells and improved their capacity to induce endothelial cell migration and proliferation. Chemotherapy also upregulated FPR2 expression, an HN membrane-bound receptor, and the HNGF6A cytoprotective effects were inhibited by an FPR2 receptor antagonist (WRW4). These effects were observed in glioma cells with heterogeneous genetic backgrounds, i.e., glioma cells with wild-type (wtIDH) and mutated (mIDH) isocitrate dehydrogenase. HN silencing using a baculoviral vector that encodes for a specific shRNA for HN (BV.shHN) reduced chemoresistance, and impaired the migration and proangiogenic capacity of GBM cells. Taken together, our findings suggest that HN boosts the hallmark characteristics of GBM, i.e., chemoresistance, migration and endothelial cell proliferation. Thus, strategies that inhibit the HN/FPR2 pathway may improve the response of GBM to standard therapyInstituto de Biotecnología y Biología Molecula

    Evaluation of baculoviruses as gene therapy vectors for brain cancer

    Get PDF
    We aimed to assess the potential of baculoviral vectors (BV) for brain cancer gene therapy. We compared them with adenoviral vectors (AdV), which are used in neuro-oncology, but for which there is pre-existing immunity. We constructed BVs and AdVs encoding fluorescent reporter proteins and evaluated their transduction efficiency in glioma cells and astrocytes. Naïve and glioma-bearing mice were intracranially injected with BVs to assess transduction and neuropathology. Transgene expression was also assessed in the brain of BV-preimmunized mice. While the expression of BVs was weaker than AdVs in murine and human glioma cell lines, BV-mediated transgene expression in patient-derived glioma cells was similar to AdV-mediated transduction and showed strong correlation with clathrin expression, a protein that interacts with the baculovirus glycoprotein GP64, mediating BV endocytosis. BVs efficiently transduced normal and neoplastic astrocytes in vivo, without apparent neurotoxicity. BV-mediated transgene expression was stable for at least 21 days in the brain of naïve mice, but it was significantly reduced after 7 days in mice systemically preimmunized with BVs. Our findings indicate that BVs efficiently transduce glioma cells and astrocytes without apparent neurotoxicity. Since humans do not present pre-existing immunity against BVs, these vectors may constitute a valuable tool for the delivery of therapeutic genes into the brain.Instituto de Biotecnología y Biología Molecula

    Exploring the Role of the Inhibitor of Apoptosis BIRC6 in Breast Cancer: A Database Analysis

    No full text
    PURPOSE: The aim of the present work was to investigate the role of apoptosis inhibitor BIRC6 (baculoviral IAP repeat-containing protein 6) in breast cancer (BC), focusing particularly on its involvement in the metastatic cascade. METHODS: We analyzed BIRC6 mRNA expression levels and copy number variations in three BC databases from The Cancer Genome Atlas comparing clinical and molecular attributes. Genomic analysis was performed using the cBioPortal platform, whereas transcriptomic studies (mRNA expression levels, correlation heatmaps, survival plots, and gene ontology) were performed using USC Xena and R. Statistical significance was set at P < .05. RESULTS: Our bioinformatic analyses showed that there was a differential expression of BIRC6 in cancer samples when compared with normal samples. Copy number variations that involve amplification and gain of BIRC6 gene were correlated with negative hormone receptor tumors, higher prognostic indexes, younger age at diagnosis, and both chemotherapy and radiotherapy administration. Transcriptomic and gene ontology analyses showed that, under conditions of high BIRC6 mRNA levels, there are differential expression patterns in apoptotic, proliferation, and metastatic pathways. CONCLUSION: In summary, our in silico data suggest that BIRC6 plays an antiapoptotic, pro-proliferative, and apparent prometastatic role and could be a relevant molecular target for treatment of BC tumors.Fil: Gomez Bergna, Santiago Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Marchesini, Abril. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Amorós Morales, Leslie Cinthya. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Arrías, Paula Nazarena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Farina, Hernán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; ArgentinaFil: Romanowski, Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Gottardo, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; ArgentinaFil: Pidre, Matias Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentin

    Exploring the metastatic role of the inhibitor of apoptosis BIRC6 in Breast Cancer

    No full text
    Breast cancer is the most common cancer as well as the first cause of death by cancer in women worldwide. BIRC6 (baculoviral IAP repeat-containing protein 6) is a member of the inhibitors of apoptosis protein family thought to play an important role in the progression or chemoresistance of many cancers. The aim of the present work was to investigate the role of apoptosis inhibitor BIRC6 in breast cancer, focusing particularly on its involvement in the metastatic cascade. We analyzed BIRC6 mRNA expression levels and Copy Number Variations (CNV) in three breast cancer databases from The Cancer Genome Atlas (TCGA) comparing clinical and molecular attributes. Genomic analysis was performed using CBioportal platform while transcriptomic studies (mRNA expression levels, correlation heatmaps, survival plots and Gene Ontology) were performed with USC Xena and R. Statistical significance was set at p-values less than 0.05. Our analyses showed that there was a differential expression of BIRC6 in cancer samples when compared to normal samples. CNV that involve amplification and gain of BIRC6 gene were correlated with negative hormone receptor tumors, higher prognostic indexes, younger age at diagnosis and both chemotherapy and radiotherapy administration. Transcriptomic and gene-ontology analyses showed that, in conditions of high BIRC6 mRNA levels, there are differential expression patterns in apoptotic, proliferation, and metastatic pathways. In summary, our in silico analyses suggest that BIRC6 exhibits an antiapoptotic, pro-proliferative and an apparent pro-metastatic role and could be a relevant molecular target for treatment of Breast Cancer tumors.Instituto de Biotecnologia y Biologia Molecula

    Structured Tandem Repeats in Protein Interactions

    No full text
    Tandem repeats (TRs) in protein sequences are consecutive, highly similar sequence motifs. Some types of TRs fold into structural units that pack together in ensembles, forming either an (open) elongated domain or a (closed) propeller, where the last unit of the ensemble packs against the first one. Here, we examine TR proteins (TRPs) to see how their sequence, structure, and evolutionary properties favor them for a function as mediators of protein interactions. Our observations suggest that TRPs bind other proteins using large, structured surfaces like globular domains; in particular, open-structured TR ensembles are favored by flexible termini and the possibility to tightly coil against their targets. While, intuitively, open ensembles of TRs seem prone to evolve due to their potential to accommodate insertions and deletions of units, these evolutionary events are unexpectedly rare, suggesting that they are advantageous for the emergence of the ancestral sequence but are early fixed. We hypothesize that their flexibility makes it easier for further proteins to adapt to interact with them, which would explain their large number of protein interactions. We provide insight into the properties of open TR ensembles, which make them scaffolds for alternative protein complexes to organize genes, RNA and proteins.Fil: Mac Donagh, Juan. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marchesini, Abril. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Spiga, Agostina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Fallico, Maximiliano José. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Arrias, Paula Nazarena. Università di Padova; ItaliaFil: Monzon, Alexander Miguel. Dipartamento Di Ingegneria Dell' Informazione ; Universita Degli Studi Di Padova;Fil: Vagiona, Aimilia Christina. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Gonçalves Kulik, Mariane. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Mier, Pablo. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Andrade Navarro, Miguel A.. Johannes Gutenberg Universitat Mainz; Alemani

    Structured Tandem Repeats in Protein Interactions

    No full text
    Tandem repeats (TRs) in protein sequences are consecutive, highly similar sequence motifs. Some types of TRs fold into structural units that pack together in ensembles, forming either an (open) elongated domain or a (closed) propeller, where the last unit of the ensemble packs against the first one. Here, we examine TR proteins (TRPs) to see how their sequence, structure, and evolutionary properties favor them for a function as mediators of protein interactions. Our observations suggest that TRPs bind other proteins using large, structured surfaces like globular domains; in particular, open-structured TR ensembles are favored by flexible termini and the possibility to tightly coil against their targets. While, intuitively, open ensembles of TRs seem prone to evolve due to their potential to accommodate insertions and deletions of units, these evolutionary events are unexpectedly rare, suggesting that they are advantageous for the emergence of the ancestral sequence but are early fixed. We hypothesize that their flexibility makes it easier for further proteins to adapt to interact with them, which would explain their large number of protein interactions. We provide insight into the properties of open TR ensembles, which make them scaffolds for alternative protein complexes to organize genes, RNA and proteins
    corecore