55 research outputs found

    Outer membrane vesicles from probiotic and commensal Escherichia coli activate NOD1-mediated immune responses in intestinal epithelial cells

    Get PDF
    Gut microbiota plays a critical role in maintaining human intestinal homeostasis and host health. Bacterial extracellular vesicles are key players in bacteria-host communication, as they allow delivery of effector molecules into the host cells. Outer membrane vesicles (OMVs) released by Gram-negative bacteria carry many ligands of pattern recognition receptors that are key components of innate immunity. NOD1 and NOD2 cytosolic receptors specifically recognize peptidoglycans present within the bacterial cell wall. These intracellular immune receptors are essential in host defense against bacterial infections and in the regulation of inflammatory responses. Recent contributions show that NODs are also fundamental to maintain intestinal homeostasis and microbiota balance. Peptidoglycan from non-invasive pathogens is delivered to cytosolic NODs through OMVs, which are internalized via endocytosis. Whether this pathway could be used by microbiota to activate NOD receptors remains unexplored. Here, we report that OMVs isolated from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 activate NOD1 signaling pathways in intestinal epithelial cells. NOD1 silencing and RIP2 inhibition significantly abolished OMV-mediated activation of NF-κB and subsequent IL-6 and IL-8 expression. Confocal fluorescence microscopy analysis confirmed that endocytosed OMVs colocalize with NOD1, trigger the formation of NOD1 aggregates, and promote NOD1 association with early endosomes. This study shows for the first time the activation of NOD1-signaling pathways by extracellular vesicles released by gut microbiota. Keywords: gut microbiota, Escherichia coli Nissle 1917, NF-κB activation, bacterial extracellular vesicles, NOD

    Activation of immune and defense responses in the intestinal mucosa by outer membrane vesicles of commensal and probiotic Escherichia coli strains

    Get PDF
    The influence of microbiota in human health is well established. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not fully known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a delivery mechanism of microbial factors, having an important role in intercellular communication. Here we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i) peripheral blood mononuclear cells (PBMCs) as a model of intestinal barrier disruption, (ii) apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii) colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed for comparison. Whereas OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells, and that activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier.

    Formulation Strategies to Improve Nose-to-Brain Delivery of Donepezil

    Get PDF
    Donepezil (DPZ) is widely used in the treatment of Alzheimer's disease in tablet form for oral administration. The pharmacological efficacy of this drug can be enhanced by the use of intranasal administration because this route makes bypassing the blood-brain barrier (BBB) possible. The aim of this study was to develop a nanoemulsion (NE) as well as a nanoemulsion with a combination of bioadhesion and penetration enhancing properties (PNE) in order to facilitate the transport of DPZ from nose-to-brain. Composition of NE was established using three pseudo-ternary diagrams and PNE was developed by incorporating Pluronic F-127 to the aqueous phase. Parameters such as physical properties, stability, in vitro release profile, and ex vivo permeation were determined for both formulations. The tolerability was evaluated by in vitro and in vivo models. DPZ-NE and DPZ-PNE were transparent, monophasic, homogeneous, and physically stable with droplets of nanometric size and spherical shape. DPZ-NE showed Newtonian behavior whereas a shear thinning (pseudoplastic) behavior was observed for DPZ-PNE. The release profile of both formulations followed a hyperbolic kinetic. The permeation and prediction parameters were significantly higher for DPZ-PNE, suggesting the use of polymers to be an effective strategy to improve the bioadhesion and penetration of the drug through nasal mucosa, which consequently increase its bioavailability

    An overview on the modulation of the intestinal barrier and immune response by membrane vesicles secreted by the probiotic Escherichia coli Nissle 1917

    Get PDF
    Podeu consultar el llibre complet a: http://hdl.handle.net/2445/128014Probiotic Escherichia coli Nissle 1917 (EcN) is a good colonizer of the human gut and its efficacy in the inflammatory process undergone in ulcerative colitis has been demonstrated. The probiotic action is mainly through the modulation of intestinal epithelial tight junctions and immune system. Here we review the role of outer membrane vesicles (OMVs) released by this probiotic strain on the modulation of intestinal homeostasis. EcN OMVs enter into host epithelial cells via clathrin-mediated endocytosis and are sorted to lysosomes via endocytic compartments. In cellular models of intestinal barrier, EcN OMVs stimulate the underlying immune system through the intestinal epithelium, triggering immune and defense responses. Thus, the use of probiotic derived OMVs could be a safe probiotic-derived strategy targeting intestinal inflammatory processes

    Extracellular vesicles and soluble factors secreted by Escherichia coli Nissle 1917 and ECOR63 protect against enteropathogenic E. coli-induced intestinal epithelial barrier dysfunction

    Get PDF
    Background: Enteric pathogens have developed mechanisms to disrupt tight junctions and increase gut permeability. Many studies have analysed the ability of live probiotics to protect intestinal epithelial cells against tight junction damage caused by bacterial pathogens. Escherichia coli Nissle 1917 (EcN) is among the probiotics that positively modulates the intestinal epithelial barrier by regulating expression and distribution of tight junction proteins. We previously reported that regulation of ZO-1, claudin-14 and claudin-2 is mediated by EcN secreted factors, either free-released or associated with outer membrane vesicles (OMVs). Factors secreted by commensal ECOR63 elicited comparable effects in intact epithelial T-84 and Caco-2 cell monolayers. Results:Here we analyse the ability of OMVs and soluble secreted factors to protect epithelial barrier function in polarized T-84 and Caco-2 cells infected with enteropathogenic Escherichia coli (EPEC). Transepithelial electrical resistance, paracellular permeability, mRNA levels and subcellular distribution of tight junction proteins were monitored in the absence or presence of EcN and ECOR63 extracellular fractions. EPEC downregulated expression of ZO-1 ZO-2, occludin and claudin-14 and altered the subcellular localization of ZO-1, occludin and F-actin cytoskeleton. OMVs and soluble factors secreted by EcN and ECOR63 counteracted EPEC- altered transepithelial resistance and paracellular permeability, preserved occludin and claudin-14 mRNA levels, retained ZO-1 and occludin at tight junctions in the cell boundaries and ameliorated F-actin disorganization. Redistribution of ZO-1 was not accompanied by changes at mRNA level. Conclusions: This study provides new insights on the role of microbiota secreted factors on the modulation of intestinal tight junctions, expanding their barrier- protective effects against pathogen-induced disruption

    Membrane vesicles released by a hypervesiculating Escherichia coli Nissle 1917 tolR mutant are highly heterogeneous and show reduced capacity for epithelial cell interaction and entry.

    Get PDF
    Membrane vesicles (MVs) produced by Gram-negative bacteria are being explored for novel clinical applications due to their ability to deliver active molecules to distant host cells, where they can exert immunomodulatory properties. MVs released by the probiotic Escherichia coli Nissle 1917 (EcN) are good candidates for testing such applications. However, a drawback for such studies is the low level of MV isolation from in vitro culture supernatants, which may be overcome by the use of mutants in cell envelope proteins that yield a hypervesiculation phenotype. Here, we confirm that a tolR mutation in EcN increases MV production, as determined by protein, LPS and fluorescent lipid measurements. Transmission electron microscopy (TEM) of negatively stained MVs did not reveal significant differences with wild type EcN MVs. Conversely, TEM observation after high-pressure freezing followed by freeze substitution of bacterial samples, together with cryo-TEM observation of plunge-frozen hydrated isolated MVs showed considerable structural heterogeneity in the EcN tolR samples. In addition to common one-bilayer vesicles (OMVs) and the recently described double-bilayer vesicles (O-IMVs), other types of MVs were observed. Time-course experiments of MV uptake in Caco-2 cells using rhodamine- and DiO-labelled MVs evidenced that EcN tolR MVs displayed reduced internalization levels compared to the wild-type MVs. The low number of intracellular MVs was due to a lower cell binding capacity of the tolR-derived MVs, rather than a different entry pathway or mechanism. These findings indicate that heterogeneity of MVs from tolR mutants may have a major impact on vesicle functionality, and point to the need for conducting a detailed structural analysis when MVs from hypervesiculating mutants are to be used for biotechnological applications

    The secreted autotransporter toxin (Sat) does not act as a virulence factor in the probiotic Escherichia coli strain Nissle 1917

    Get PDF
    BACKGROUND: Escherichia coli Nissle 1917 (EcN) is a probiotic used in the treatment of intestinal diseases. Although it is considered safe, EcN is closely related to the uropathogenic E. coli strain CFT073 and contains many of its predicted virulence elements. Thus, it is relevant to assess whether virulence-associated genes are functional in EcN. One of these genes encodes the secreted autotransporter toxin (Sat), a member of the serine protease autotransporters of Enterobacteriaceae (SPATEs) that are secreted following the type V autotransporter pathway. Sat is highly prevalent in certain E. coli pathogenic groups responsible for urinary and intestinal infections. In these pathogens Sat promotes cytotoxic effects in several lines of undifferentiated epithelial cells, but not in differentiated Caco-2 cells. RESULTS: Here we provide evidence that sat is expressed by EcN during the colonization of mouse intestine. The EcN protein is secreted as an active serine protease, with its 107 kDa-passenger domain released into the medium as a soluble protein. Expression of recombinant EcN Sat protein in strain HB101 increases paracellular permeability to mannitol in polarized Caco-2 monolayers. This effect, also reported for the Sat protein of diffusely adherent E. coli, is not observed when this protein is expressed in the EcN background. In addition, we show that EcN supernatants confer protection against Sat-mediated effects on paracellular permeability, thus indicating that other secreted EcN factors are able to prevent barrier disruption caused by pathogen-related factors. Sat is not required for intestinal colonization, but the EcNsat::cat mutant outcompetes wild-type EcN in the streptomycin-treated mouse model. Analysis of the presence of sat in 29 strains of the ECOR collection isolated from stools of healthy humans shows 34.8 % positives, with high prevalence of strains of the phylogenetic groups D and B2, related with extra-intestinal infections. CONCLUSIONS: Sat does not act as a virulence factor in EcN. The role of Sat in intestinal pathogenesis relies on other genetic determinants responsible for the bacterial pathotype

    Proteomic profile of extracellular vesicles released by Lactiplantibacillus plantarum BGAN8 and their internalization by non‑polarized HT29 cell line

    Full text link
    In recent years the role of extracellular vesicles (EVs) of Gram-positive bacteria in host-microbe cross-talk has become increasingly appreciated, although the knowledge of their biogenesis, release and host-uptake is still limited. The aim of this study was to characterize the EVs released by the dairy isolate Lactiplantibacillus plantarum BGAN8 and to gain an insight into the putative mechanism of EVs uptake by intestinal epithelial cells. The cryo-TEM observation undoubtedly demonstrated the release of EVs (20 to 140nm) from the surface of BGAN8, with exopolysaccharides seems to be part of EVs surface. The proteomic analysis revealed that the EVs are enriched in enzymes involved in central metabolic pathways, such as glycolysis, and in membrane components with the most abundant proteins belonging to amino acid/peptide ABC transporters. Putative internalization pathways were evaluated in time-course internalization experiments with non-polarized HT29 cells in the presence of inhibitors of endocytic pathways: chlorpromazine and dynasore (inhibitors of clathrin-mediated endocytosis-CME) and filipin III and nystatin (disrupting lipid rafts). For the first time, our results revealed that the internalization was specifically inhibited by dynasore and chlorpromazine but not by filipin III and nystatin implying that one of the entries of L. plantarum vesicles was through CME pathway

    Outer membrane vesicles from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 enter intestinal epithelial cells via clathrin-dependent endocytosis and elicit differential effects on DNA damage.

    Get PDF
    Interactions between intestinal microbiota and the human host are complex. The gut mucosal surface is covered by a mucin layer that prevents bacteria from accessing the epithelial cells. Thus, the crosstalk between microbiota and the host mainly rely on secreted factors that can go through the mucus layer and reach the epithelium. In this context, vesicles released by commensal strains are seen as key players in signaling processes in the intestinal mucosa. Studies with Gram-negative pathogens showed that outer membrane vesicles (OMVs) are internalized into the host cell by endocytosis, but the entry mechanism for microbiota-derived vesicles is unknown. Escherichia coli strains are found as part of normal human gut microbiota. In this work, we elucidate the pathway that mediate internalization of OMVs from the probiotic E.coli Nissle 1917 (EcN) and the commensal ECOR12 strains in several human intestinal epithelial cell lines. Time course measurement of fluorescence and microscopy analysis performed with rhodamine B-R18-labeled OMVs in the presence of endocytosis inhibitors showed that OMVs from these strains enter epithelial cells via clathrin-mediated endocytosis. Vesicles use the same endocytosis pathway in polarized epithelial monolayers. Internalized OMVs are sorted to lysosomal compartments as shown by their colocalization with clathrin and specific markers of endosomes and lysosomes. OMVs from both strains did not affect cell viability, but reduce proliferation of HT-29 cells. Labeling of 8-oxo-dG adducts in DNA revealed that neither OMVs from EcN nor from ECOR12 promoted oxidative DNA damage. In contrast, flow cytometry analysis of phosphorylated γH2AX evidenced that OMVs from the probiotic EcN significantly produced more double strand breaks in DNA than ECOR12 OMVs. The EcN genotoxic effects have been attributed to the synthesis of colibactin. However, it is not known how colibactin is exported and delivered into host cells. Whether colibactin is secreted via OMVs is an open question that needs further study

    Connections : safe spaces for women and youth in Latin America and The Caribbean

    Get PDF
    RESUMEN: Este libro se puede leer en muchos niveles. Uno de ellos puede no ser muy obvio para aquellos que están acostumbrados a leer sobre violencia e inseguridad en América Latina. Es el nivel que le da a este libro un estatus de originalidad y una contribución que va más allá de la región: el ser una forma de conocimiento destinada no solo a interpretar el mundo, sino a cambiarlo […], visibiliza la importancia de un proceso de investigación ajustado al tipo de conocimiento que produce. Aquí se conectan el proceso y el resultado, lo que debería propiciar un debate más amplio con respecto a cómo y qué sabemos de la naturaleza de la violencia y la agencia social para reducirla […]. Esta visión es particularmente relevante en contextos donde el Estado reproduce la violencia, con terribles impactos, en especial en periferias excluidas. […] El proceso de investigación abordado en este libro transgredió muchas fronteras. Hubo fronteras entre países, barreras lingüísticas, fronteras en torno a la educación, el conocimiento y la experiencia, y entre etnias, géneros y generaciones. […] este proceso reunió a académicos, activistas y líderes comunitarios de cinco países de América Latina y uno del Caribe, incluyendo comunidades indígenas en México y Guatemala […]. La violencia está en el tiempo y en el espacio y se reproduce entre las generaciones en diversos espacios de socialización. Este proceso de investigación que trasciende las fronteras, plantea una discusión que atraviesa los diferentes casos sobre cómo los déficits y las desigualdades materiales, las violencias estatales en nombre de la ‘seguridad’, las especificidades culturales, de género y generacionales de la experiencia y la comprensión de la violencia, así como las diversas formas de criminalidad, se cruzan y se reproducen a través del tiempo y el espacio. Jenny Pearce, investigadora y profesora en el Latin American and Caribbean Centre (LACC) de la London School of Economics and Political ScienceABSTRACT: This book can be read on many levels. One level may not be so obvious to those who are used to reading about violence and insecurity in Latin America. It is the level which gives this book a claim to true originality and a contribution beyond the region. This contribution is to form of scholarship aimed not only to interpret the world but to change it […], this text visibilizes the significance of the research process to the kind of knowledge that is produced. It connects process and outcome, and this should start a wider debate about how as well as what we know about the nature of violence and the social agency to reduce it […]. This is particularly relevant in contexts where the State reproduces violence, with terrible impacts on the margins. The research process discussed in this book transgressed many boundaries. There were intercountry borders, linguistic barriers, boundaries around education, knowledge and experience and between ethnicities, genders and generations. […] the research process brought together scholars and community activists and actors from five Latin American and one Caribbean country. And within Latin America there were indigenous communities in Mexico and Guatemala who participated […]. Violence is located in time and space. It is reproduced inter-generationally through varied socialisation spaces. The boundary crossing research process, raises cross case discussion about how material deficits and inequalities, state violences in the name of ‘security’, cultural, gender and generational specificities of experience and understanding of violence, and varied forms of criminality, intersect and reproduce through time and space. Professor Jenny Pearce. Latin American and Caribbean Centre (LACC), London School of Economics and Political Scienc
    • …
    corecore