7 research outputs found

    Sustainable Production of Algal Biodiesel Using Chlorella Pyrenoidosa

    Get PDF
    The excessive consumption and utilization of fossil fuels, has had deleterious effect on the global fuel supply. It also has a detrimental effect on the environment, a growing concern in the last century. The key is in finding alternative and sustainable fuel sources, such as Biodiesel, and their efficient production and utilization to meet the surplus demand. Food crops and Microalgae have been identified to be potent producers of biodiesel. Microalgae trump the food crops on account of higher fatty acid content, that aid in the synthesis of biodiesel. In this study, we have utilized the microalgae, Chlorella pyrenoidosa as a source, having a high lipid content. The microalgae was cultured under optimal conditions and the extraction of the oil rich constituents was done by sonication. Further, trans-esterification was carried out to produce biodiesel. We then characterized the fuel based on its Saponification value, thin layer chromatography, types of fatty

    Ultrahigh Resolution Crystal Structures Of Human Carbonic Anhydrases I And Ii Complexed With Two-Prong Inhibitors Reveal The Molecular Basis Of High Affinity

    No full text
    The atomic-resolution crystal structures of human carbonic anhydrases I and II complexed with two-prong inhibitors are reported. Each inhibitor contains a benzenesulfonamide prong and a cupric iminodiacetate (IDA-Cu 2+) prong separated by linkers of different lengths and compositions. The ionized NH- group of each benzenesulfonamide coordinates to the active site Zn2+ ion; the IDA-Cu2+ prong of the tightest-binding inhibitor, BR30, binds to H64 of CAII and H200 of CAI. This work provides the first evidence verifying the structural basis of nanomolar affinity measured for two-prong inhibitors targeting the carbonic anhydrases. © 2006 American Chemical Society

    Energetic rationale for an unexpected and abrupt reversal of guanidinium chloride-induced unfolding of peptide deformylase

    No full text
    Peptide deformylase (PDF) catalyzes the removal of formyl group from the N-terminal methionine residues of nascent proteins in prokaryotes, and this enzyme is a high priority target for antibiotic design. In pursuit of delineating the structural–functional features of Escherichia coli PDF (EcPDF), we investigated the mechanistic pathway for the guanidinium chloride (GdmCl)-induced unfolding of the enzyme by monitoring the secondary structural changes via CD spectroscopy. The experimental data revealed that EcPDF is a highly stable enzyme, and it undergoes slow denaturation in the presence of varying concentrations of GdmCl. The most interesting aspect of these studies has been the abrupt reversal of the unfolding pathway at low to moderate concentrations of the denaturant, but not at high concentration. An energetic rationale for such an unprecedented feature in protein chemistry is offered
    corecore