6,125 research outputs found

    INTELSAT

    Get PDF

    INTELSAT

    Get PDF

    Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models

    Get PDF
    The dispersal patterns of animals are important in metapopulation ecology because they affect the dynamics and survival of populations. Theoretical models assume random dispersal but little is known in practice about the dispersal behaviour of individual animals or the strategy by which dispersers locate distant habitat patches. In the present study, we released individual meadow brown butterflies (Maniola jurtina) in a non-habitat and investigated their ability to return to a suitable habitat. The results provided three reasons for supposing that meadow brown butterflies do not seek habitat by means of random flight. First, when released within the range of their normal dispersal distances, the butterflies orientated towards suitable habitat at a higher rate than expected at random. Second, when released at larger distances from their habitat, they used a non-random, systematic, search strategy in which they flew in loops around the release point and returned periodically to it. Third, butterflies returned to a familiar habitat patch rather than a non-familiar one when given a choice. If dispersers actively orientate towards or search systematically for distant habitat, this may be problematic for existing metapopulation models, including models of the evolution of dispersal rates in metapopulations

    Triplet Leptogenesis in Left-Right Symmetric Seesaw Models

    Full text link
    We discuss scalar triplet leptogenesis in a specific left-right symmetric seesaw model. We show that the Majorana phases that are present in the model can be effectively used to saturate the existing upper limit on the CP-asymmetry of the triplets. We solve the relevant Boltzmann equations and analyze the viability of triplet leptogenesis. It is known for this kind of scenario that the efficiency of leptogenesis is maximal if there exists a hierarchy between the branching ratios of the triplet decays into leptons and Higgs particles. We show that triplet leptogenesis typically favors branching ratios with not too strong hierarchies, since maximal efficiency can only be obtained at the expense of suppressed CP-asymmetries.Comment: 16 pages, 5 figures, published versio

    Semiquantum Chaos in the Double-Well

    Full text link
    The new phenomenon of semiquantum chaos is analyzed in a classically regular double-well oscillator model. Here it arises from a doubling of the number of effectively classical degrees of freedom, which are nonlinearly coupled in a Gaussian variational approximation (TDHF) to full quantum mechanics. The resulting first-order nondissipative autonomous flow system shows energy dependent transitions between regular behavior and semiquantum chaos, which we monitor by Poincar\'e sections and a suitable frequency correlation function related to the density matrix. We discuss the general importance of this new form of deterministic chaos and point out the necessity to study open (dissipative) quantum systems, in order to observe it experimentally.Comment: LaTeX, 25 pages plus 7 postscript figures. Replaced figure 3 with a non-bitmapped versio

    Complete one-loop analysis of the nucleon's spin polarizabilities

    Get PDF
    We present a complete one-loop analysis of the four nucleon spin polarizabilities in the framework of heavy baryon chiral perturbation theory. The first non-vanishing contributions to the isovector and first corrections to the isoscalar spin polarizabilities are calculated. No unknown parameters enter these predictions. We compare our results to various dispersive analyses. We also discuss the convergence of the chiral expansion and the role of the delta isobar.Comment: 4 pp, REVTE

    Low energy effects of neutrino masses

    Full text link
    While all models of Majorana neutrino masses lead to the same dimension five effective operator, which does not conserve lepton number, the dimension six operators induced at low energies conserve lepton number and differ depending on the high energy model of new physics. We derive the low-energy dimension six operators which are characteristic of generic Seesaw models, in which neutrino masses result from the exchange of heavy fields which may be either fermionic singlets, fermionic triplets or scalar triplets. The resulting operators may lead to effects observable in the near future, if the coefficients of the dimension five and six operators are decoupled along a certain pattern, which turns out to be common to all models. The phenomenological consequences are explored as well, including their contributions to μ→eγ\mu \to e \gamma and new bounds on the Yukawa couplings for each model.Comment: modifications: couplings in appendix B, formulas (121)-(122) on rare leptons decays (to match with published version) and consequently bounds in table

    Axial form factor of the nucleon in the perturbative chiral quark model

    Full text link
    We apply the perturbative chiral quark model (PCQM) at one loop to analyze the axial form factor of the nucleon. This chiral quark model is based on an effective Lagrangian, where baryons are described by relativistic valence quarks and a perturbative cloud of Goldstone bosons as dictated by chiral symmetry. We apply the formalism to obtain analytical expressions for the axial form factor of the nucleon, which is given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core).Comment: 23 pages, 5 figures, accepted for publication in J. Phys.
    • …
    corecore