34,287 research outputs found

    The Guilty Mind

    Get PDF
    The doctrine of mens rea can be expressed in this way: MRP: If A is culpable for performing phi, then A performs phi intentionally in circumstances in which it is impermissible to perform phi. The Sermon on the Mount suggests the following principle: SMP: If A intends to perform phi in circumstances in which it would be impermissible for A to perform phi, then A’s intending to perform phi makes A as culpable as A would be were A to perform phi. MRP and SMP are principles representative of intentionalism, a family of views that emphasizes the importance of intention to judgments about culpability. This essay examines an intentionalist’s defense of MRP with respect to lying, strict criminal liability, and the distinction between intention and foreseeability, along with a defense of SMP with respect to failed attempts, and self-defens

    Super Black Hole from Cosmological Supergravity with a Massive Superparticle

    Get PDF
    We describe in superspace a classical theory of two dimensional (1,1)(1,1) cosmological dilaton supergravity coupled to a massive superparticle. We give an exact non-trivial superspace solution for the compensator superfield that describes the supergravity, and then use this solution to construct a model of a two-dimensional supersymmetric black hole.Comment: 7 pages, Late

    Suprathermal electron distributions in the solar transition region

    Full text link
    Suprathermal tails are a common feature of solar wind electron velocity distributions, and are expected in the solar corona. From the corona, suprathermal electrons can propagate through the steep temperature gradient of the transition region towards the chromosphere, and lead to non-Maxwellian electron velocity distribution functions (VDFs) with pronounced suprathermal tails. We calculate the evolution of a coronal electron distribution through the transition region in order to quantify the suprathermal electron population there. A kinetic model for electrons is used which is based on solving the Boltzmann-Vlasov equation for electrons including Coulomb collisions with both ions and electrons. Initial and chromospheric boundary conditions are Maxwellian VDFs with densities and temperatures based on a background fluid model. The coronal boundary condition has been adopted from earlier studies of suprathermal electron formation in coronal loops. The model results show the presence of strong suprathermal tails in transition region electron VDFs, starting at energies of a few 10 eV. Above electron energies of 600 eV, electrons can traverse the transition region essentially collision-free. The presence of strong suprathermal tails in transition region electron VDFs shows that the assumption of local thermodynamic equilibrium is not justified there. This has a significant impact on ionization dynamics, as is shown in a companion paper

    Supergravity from a Massive Superparticle and the Simplest Super Black Hole

    Get PDF
    We describe in superspace a theory of a massive superparticle coupled to a version of two dimensional N=1 dilaton supergravity. The (1+1) dimensional supergravity is generated by the stress-energy of the superparticle, and the evolution of the superparticle is reciprocally influenced by the supergravity. We obtain exact superspace solutions for both the superparticle worldline and the supergravity fields. We use the resultant non-trivial compensator superfield solution to construct a model of a two-dimensional supersymmetric black hole.Comment: Latex, 27 pages, minor typos corrected and reference adde

    Conservation Laws and 2D Black Holes in Dilaton Gravity

    Full text link
    A very general class of Lagrangians which couple scalar fields to gravitation and matter in two spacetime dimensions is investigated. It is shown that a vector field exists along whose flow lines the stress-energy tensor is conserved, regardless of whether or not the equations of motion are satisfied or if any Killing vectors exist. Conditions necessary for the existence of Killing vectors are derived. A new set of 2D black hole solutions is obtained for one particular member within this class of Lagrangians. One such solution bears an interesting resemblance to the 2D string-theoretic black hole, yet contains markedly different thermodynamic properties.Comment: 11 pgs. WATPHYS-TH92/0

    Symmetry Breaking Using Value Precedence

    Full text link
    We present a comprehensive study of the use of value precedence constraints to break value symmetry. We first give a simple encoding of value precedence into ternary constraints that is both efficient and effective at breaking symmetry. We then extend value precedence to deal with a number of generalizations like wreath value and partial interchangeability. We also show that value precedence is closely related to lexicographical ordering. Finally, we consider the interaction between value precedence and symmetry breaking constraints for variable symmetries.Comment: 17th European Conference on Artificial Intelligenc

    Acceleration of phenological advance and warming with latitude over the past century.

    Get PDF
    In the Northern Hemisphere, springtime events are frequently reported as advancing more rapidly at higher latitudes, presumably due to an acceleration of warming with latitude. However, this assumption has not been investigated in an analytical framework that simultaneously examines acceleration of warming with latitude while accounting for variation in phenological time series characteristics that might also co-vary with latitude. We analyzed 743 phenological trend estimates spanning 86 years and 42.6 degrees of latitude in the Northern Hemisphere, as well as rates of Northern Hemisphere warming over the same period and latitudinal range. We detected significant patterns of co-variation in phenological time series characteristics that may confound estimates of the magnitude of variation in trends with latitude. Notably, shorter and more recent time series tended to produce the strongest phenological trends, and these also tended to be from higher latitude studies. However, accounting for such variation only slightly modified the relationship between rates of phenological advance and latitude, which was highly significant. Furthermore, warming has increased non-linearly with latitude over the past several decades, most strongly since 1998 and northward of 59°N latitude. The acceleration of warming with latitude has likely contributed to an acceleration of phenological advance along the same gradient

    Higher Gauge Theory and Gravity in (2+1) Dimensions

    Full text link
    Non-abelian higher gauge theory has recently emerged as a generalization of standard gauge theory to higher dimensional (2-dimensional in the present context) connection forms, and as such, it has been successfully applied to the non-abelian generalizations of the Yang-Mills theory and 2-form electrodynamics. (2+1)-dimensional gravity, on the other hand, has been a fertile testing ground for many concepts related to classical and quantum gravity, and it is therefore only natural to investigate whether we can find an application of higher gauge theory in this latter context. In the present paper we investigate the possibility of applying the formalism of higher gauge theory to gravity in (2+1) dimensions, and we show that a nontrivial model of (2+1)-dimensional gravity coupled to scalar and tensorial matter fields - the ΣΦEA\Sigma\Phi EA model - can be formulated both as a standard gauge theory and as a higher gauge theory. Since the model has a very rich structure - it admits as solutions black-hole BTZ-like geometries, particle-like geometries as well as Robertson-Friedman-Walker cosmological-like expanding geometries - this opens a wide perspective for higher gauge theory to be tested and understood in a relevant gravitational context. Additionally, it offers the possibility of studying gravity in (2+1) dimensions coupled to matter in an entirely new framework.Comment: 22 page
    corecore