5 research outputs found

    Is atmospheric pollution exposure during pregnancy associated with individual and contextual characteristics ? A nationwide study in France

    No full text
    BACKGROUND: Exposure to atmospheric pollutants is a danger for the health of pregnant mother and children. Our objective was to identify individual (socioeconomic and behavioural) and contextual factors associated with atmospheric pollution pregnancy exposure at the nationwide level. METHOD: Among 14 921 women from the French nationwide ELFE (French Longitudinal Study of Children) mother-child cohort recruited in 2011, outdoor exposure levels of PM2.5, PM10 (particulate matter <2.5 µm and <10 µm in diameter) and NO2 (nitrogen dioxide) were estimated at the pregnancy home address from a dispersion model with 1 km resolution. We used classification and regression trees (CART) and linear regression to characterise the association of atmospheric pollutants with individual (maternal age, body mass index, parity, education level, relationship status, smoking status) and contextual (European Deprivation Index, urbanisation level) factors. RESULTS: Patterns of associations were globally similar across pollutants. For the CART approach, the highest tertile of exposure included mainly women not in a relationship living in urban and socially deprived areas, with lower education level. Linear regression models identified different determinants of atmospheric pollutants exposure according to the residential urbanisation level. In urban areas, atmospheric pollutants exposure increased with social deprivation, while in rural areas a U-shaped relationship was observed. CONCLUSION: We highlighted social inequalities in atmospheric pollutants exposure according to contextual characteristics such as urbanisation level and social deprivation and also according to individual characteristics such as education, being in a relationship and smoking status. In French urban areas, pregnant women from the most deprived neighbourhoods were those most exposed to health-threatening atmospheric pollutants

    Complete Genome Sequence of Microbacterium sp. Strain Nx66, Isolated from Waters Contaminated with Petrochemicals in El Saf-Saf Valley, Algeria

    No full text
    International audienceMicrobacterium sp. strain Nx66 was isolated from waters contaminated by petrochemical effluents collected in Algeria. Its genome was sequenced using Illumina MiSeq (2 × 150-bp read pairs) and Oxford Nanopore (long reads) technologies and was assembled using Unicycler. It is composed of one chromosome of 3.42 Mb and one plasmid of 34.22 kb

    Maternal Ambient Exposure to Atmospheric Pollutants during Pregnancy and Offspring Term Birth Weight in the Nationwide ELFE Cohort

    No full text
    International audienceBackground: Studies have reported associations between maternal exposure to atmospheric pollution and lower birth weight. However, the evidence is not consistent and uncertainties remain. We used advanced statistical approaches to robustly estimate the association of atmospheric pollutant exposure during specific pregnancy time windows with term birth weight (TBW) in a nationwide study. Methods: Among 13,334 women from the French Longitudinal Study of Children (ELFE) cohort, exposures to PM2.5, PM10 (particles < 2.5 mu m and <10 mu m) and NO2 (nitrogen dioxide) were estimated using a fine spatio-temporal exposure model. We used inverse probability scores and doubly robust methods in generalized additive models accounting for spatial autocorrelation to study the association of such exposures with TBW. Results: First trimester exposures were associated with an increased TBW. Second trimester exposures were associated with a decreased TBW by 17.1 g (95% CI, -26.8, -7.3) and by 18.0 g (-26.6, -9.4) for each 5 mu g/m(3) increase in PM2.5 and PM10, respectively, and by 15.9 g (-27.6, -4.2) for each 10 mu g/m(3) increase in NO2. Third trimester exposures (truncated at 37 gestational weeks) were associated with a decreased TBW by 48.1 g (-58.1, -38.0) for PM2.5, 38.1 g (-46.7, -29.6) for PM10 and 14.7 g (-25.3, -4.0) for NO2. Effects of pollutants on TBW were larger in rural areas. Conclusions: Our results support an adverse effect of air pollutant exposure on TBW. We highlighted a larger effect of air pollutants on TBW among women living in rural areas compared to women living in urban areas
    corecore