24 research outputs found

    Evolution of Indarch (EH4 Chondrite) at 1 GPa and High Temperature

    Get PDF
    The chondritic meteorites are materials that are as old as the solar system itself characterized by variations in bulk chemical and oxidation state, and have long been considered possible building blocks that accreted to form the terrestrial inner planets. Enstatite chondrites contain nearly FeO free enstatite, silicon-rich kamacite and various sulfides indicating formation under highly reducing conditions. These materials could have participated in the formation of the Earth. However, "fingerprinting" of meteoritic materials has shown that no known meteoritic class corresponds to a hypothetical bulk Earth composition in every aspect. To derive constraints on early accretion and differentiation processes and possibly resolve the debate on the formation of the Earth, it is required to study experimentally a variety of chondritic materials and investigate their melting relations and elemental partitioning behavior at variable pressure (P), temperature (T) and oxygen fugacities (fO2). Variations in fO2 can indeed change chemical features and phase equilibria dramatically. The P-T phase diagrams of peridotites and carbonaceous chondrites have been extensively studied experimentally up to pressures and temperatures corresponding to the transition zone and lower mantle. Even though partial melting experiments have been conducted at ambient pressure on the enstatite chondrite Indarch, enstatite meteorites have never been experimentally investigated at high PT. The following investigation focuses on the effect of the fO2 on the phase relations of Indarch, an EH4 chondrite

    Pt, Au, Pd and Ru Partitioning Between Mineral and Silicate Melts: The Role of Metal Nanonuggets

    Get PDF
    The partition coefficients of Pt and other Pt Group Elements (PGE) between metal and silicate D(sub Metal-Silicate) and also between silicate minerals and silicate melts D(sub Metal-Silicate) are among the most challenging coefficients to obtain precisely. The PGE are highly siderophile elements (HSE) with D(sub Metal-Silicate) >10(exp 3) due to the fact that their concentrations in silicates are very low (ppb to ppt range). Therefore, the analytical difficulty is increased by the possible presence of HSE-rich-nuggets in reduced silicate melts during experiments). These tiny HSE nuggets complicate the interpretation of measured HSE concentrations. If the HSE micro-nuggets are just sample artifacts, then their contributions should be removed before calculations of the final concentration. On the other hand, if they are produced during the quench, then they should be included in the analysis. We still don't understand the mechanism of nugget formation well. Are they formed during the quench by precipitation from precursor species dissolved homogeneously in the melts, or are they precipitated in situ at high temperature due to oversaturation? As these elements are important tracers of early planetary processes such as core formation, it is important to take up this analytical and experimental challenge. In the case of the Earth for example, chondritic relative abundances of the HSE in some mantle xenoliths have led to the concept of the "late veneer" as a source of volatiles (such as water) and siderophiles in the silicate Earth. Silicate crystal/liquid fractionation is responsible for most, if not all, the HSE variation in the martian meteorite suites (SNC) and Pt is the element least affected by these fractionations. Therefore, in terms of reconstructing mantle HSE abundances for Mars, Pt becomes a very important player. In the present study, we have performed high temperature experiments under various redox conditions in order to determine the abundances of Pt, Au, Ru and Pd in minerals (olivine and diopside) and in silicate melts, but also to characterize the sizes, density and chemistry of HSE nuggets when present in the samples

    The Evolution of the EH4 Chondrite Indarch at High Pressure and Temperature: The First Experimental Results

    Get PDF
    Chondrite groups are characterized by variations in bulk composition and oxidation state, illustrating in part heterogeneity in the early solar nebula. Planetary accretion could be explained by at least two different scenarios: the homogeneous [1] and heterogeneous accretion models [2, 3]. In particular, for the formation of the Earth, some studies (e.g. [2, 3]) assume that one component is highly reduced material comparable to enstatite chondrites, devoid of volatile elements but containing all other elements in C1 abundance ratios. To derive constraints on the understanding of early differentiation processes, studies of the silicate phase relations and their interactions with metal, at relevant P-T-fO2, are required. Melting relations and equilibrium partitioning behaviour have been studied on peridotitic and chondritic starting compositions at pressures and temperatures corresponding to the transition zone and lower mantle [4, 5, 6]. However, enstatite chondrites, which are highly reduced primitive meteorites, have not yet been studied experimentally under such conditions. Thus, multianvil experiments have been performed at 20-25 GPa and 2000-2400 C on the EH4 chondrite Indarch

    Experimental Behavior of Sulfur Under Primitive Planetary Differentiation Processes, the Sulfide Formations in Enstatite Meteorites and Implications for Mercury.

    Get PDF
    Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures

    Replication Data for: The Diverse Planetary Ingassing/Outgassing Paths Produced over Billions of Years of Magmatic Activity

    No full text
    The C-H-O-N-S elements that constitute the outgassed atmosphere and exosphere have likely been delivered by chondritic materials to the Earth during planetary accretion and subsequently processed over billions of years of planetary differentiation. Although these elements are generally considered to be volatile, a large part of the accreted C-H-O-N-S on Earth must have been sequestered in the core and mantle, with the remaining part concentrated at the Earth’s surface (exosphere: atmosphere+ocean+crust). The likely reason for this is that, depending on the prevailing pressure (P), temperature (T) and oxidation state (oxygen fugacity, fO2) in the planet’s interior, the C-H-O-N-S elements can behave as siderophile, lithophile, refractory, magmatophile, or atmophile. It is not clear if these elements might be sequestered in the interiors of planets elsewhere, since the governing parameters of P-T-fO2 during the diverse magmatic processes controlling magmatic differentiation vary greatly over time and from planet to planet. The magma ocean outgassed the first atmosphere, which was probably also the largest in terms of mass, but its nature and composition remain poorly known. Meanwhile, a significant, but unknown, part of the accreted C-H-O-N-S elements was sequestered in the core. These will probably never be liberated into the atmosphere. A secondary atmosphere was then fuelled by volcanism, driven by mantle convection and most likely enhanced by plate tectonics. The Earth still has active volcanism, and the volume and volatile contents of its magma are closely linked to geodynamics. Earth’s volcanoes have long emitted relatively oxidized gases, in contrast to Mars and Mercury. Mantle oxidation state seems to increase with planetary size, although the role of plate tectonics in changing the Earth’s mantle oxidation state remains poorly understood. Water contents of magma from elsewhere in the solar system are not so different from those produced by the Earth’s depleted mantle. Other elements (e.g. N, S, C) are unevenly distributed. A great diversity of speciation and quantity of magmatic gas emitted is found in planetary systems, with the key inputs being: 1 – degassing of the magma ocean, 2 – mantle oxidation state (and its evolution), and 3 – plate tectonics (vs. other styles of mantle convection). Many other parameters can affect these three inputs, of which planetary size is probably one of the most important
    corecore