287 research outputs found

    Testing the Hydrogen Peroxide-Water Hypothesis for Life on Mars with the TEGA instrument on the Phoenix Lander

    Full text link
    Since Viking has conducted its life detection experiments on Mars, many missions have enhanced our knowledge about the environmental conditions on the Red Planet. However, the Martian surface chemistry and the Viking lander results remain puzzling. Non-biological explanations that favor a strong inorganic oxidant are currently favored (e.g., Mancinelli, 1989; Quinn and Zent, 1999; Klein, 1999, Yen et al., 2000), but problems remain regarding the life time, source, and abundance of that oxidant to account for the Viking observations (Zent and McKay, 1994). Alternatively, a hypothesis favoring the biological origin of a strong oxidizer has recently been advanced (Houtkooper and Schulze-Makuch, 2007). Here, we report about laboratory experiments that simulate the experiments to be conducted by the Thermal and Evolved Gas Analyzer (TEGA) instrument of the Phoenix lander, which is to descend on Mars in May 2008. Our experiments provide a baseline for an unbiased test for chemical versus biological responses, which can be applied at the time the Phoenix Lander transmits its first results from the Martian surface.Comment: 11 pages and 3 figure

    Stable carbon and nitrogen isotope ratio in PM1 and size segregated aerosol particles over the Baltic Sea

    Get PDF
    We analysed delta C-13 of total carbon (TC) and PN of total nitrogen (TN) in submicron (PM1) and size segregated aerosol particles ( PM0.056-2.5) collected during a cruise in the Baltic Sea from 9 to 17 November 2012. PM1 were characterized by the highest delta C-13 (-26.4 parts per thousand) and lowest delta N-15 (-0.2 and 0.8 parts per thousand) values when air masses arrived from the southwest direction (Poland). The obtained delta C-13 values indicated that combined emissions of coal and diesel/gasoline combustion were the most likely sources of TC. The depleted delta N-15 values indicated that TN originated mainly from liquid fuel combustion (road traffic, shipping) during this period. The lowest PC and highest delta N-15 values were determined in PM1 samples during the western airflow when the air masses had no recent contact with land. The highest delta N-15 values were probably associated with chemical aging of nitrogenous species during long-range transport, the lowest delta C-13 values could be related to emissions from diesel/gasoline combustion, potentially from ship traffic. The delta C-13 analysis of size-segregated aerosol particles PM0.056-2.5 revealed that the lowest delta C-13 values were observed in the size range from 0.056 to 0.18 mu m and gradual C-13 enrichment occurred in the size range from 0.18 to 2.5 mu m due to different sources or formation mechanisms of the aerosols

    Scattering series in mobility problem for suspensions

    Full text link
    The mobility problem for suspension of spherical particles immersed in an arbitrary flow of a viscous, incompressible fluid is considered in the regime of low Reynolds numbers. The scattering series which appears in the mobility problem is simplified. The simplification relies on the reduction of the number of types of single-particle scattering operators appearing in the scattering series. In our formulation there is only one type of single-particle scattering operator.Comment: 11 page

    2014 iAREA campaign on aerosol in Spitsbergen – Part 2: Optical properties from Raman-lidar and in-situ observations at Ny-Ålesund

    Get PDF
    In this work multi wavelength Raman lidar data from Ny-Ålesund, Spitsbergen have been analysed for the spring 2014 Arctic haze season, as part of the iAREA campaign. Typical values and probability distributions for aerosol backscatter, extinction and depolarisation, the lidar ratio and the color ratio for 4 different altitude intervals within the troposphere are given. These quantities and their dependencies are analysed and the frequency of altitude-dependent observed aerosol events are given. A comparison with ground-based size distribution and chemical composition is performed. Hence the aim of this paper is to provide typical and statistically meaningful properties of Arctic aerosol, which may be used in climate models or to constrain the radiative forcing. We have found that the 2014 season was only moderately polluted with Arctic haze and that sea salt and sulphate were the most dominant aerosol species. Moreover the drying of an aerosol layer after cloud disintegration has been observed. Hardly any clear temporal evolution over the 4 week data set on Arctic haze is obvious with the exception of the extinction coefficient and the lidar ratio, which significantly decreased below 2 km altitude by end April. In altitudes between 2 and 5 km the haze season lasted longer and the aerosol properties were generally more homogeneous than closer to the surface. Above 5 km only few particles were found. The variability of the lidar ratio is discussed. It was found that knowledge of the aerosol’s size and shape does not determine the lidar ratio. Contrary to shape and lidar ratio, there is a clear correlation between size and backscatter: larger particles show a higher backscatter coefficient

    Tier-Scalable Reconnaissance Missions For The Autonomous Exploration Of Planetary Bodies

    Get PDF
    A fundamentally new (scientific) reconnaissance mission concept, termed tier-scalable reconnaissance, for remote planetary (including Earth) atmospheric, surface and subsurface exploration recently has been devised that soon will replace the engineering and safety constrained mission designs of the past, allowing for optimal acquisition of geologic, paleohydrologic, paleoclimatic, and possible astrobiologic information of Venus, Mars, Europa, Ganymede, Titan, Enceladus, Triton, and other extraterrestrial targets. This paradigm is equally applicable to potentially hazardous or inaccessible operational areas on Earth such as those related to military or terrorist activities, or areas that have been exposed to biochemical agents, radiation, or natural disasters. Traditional missions have performed local, ground-level reconnaissance through rovers and immobile landers, or global mapping performed by an orbiter. The former is safety and engineering constrained, affording limited detailed reconnaissance of a single site at the expense of a regional understanding, while the latter returns immense datasets, often overlooking detailed information of local and regional significance

    Citizen science and the role of natural history museums

    Get PDF
    Citizen science, the active participation of the public in scientific research projects, is a rapidly expanding field in open science and open innovation. It provides an integrated model of public knowledge production and engagement with science. As a growing worldwide phenomenon, it is invigorated by evolving new technologies that connect people easily and effectively with the scientific community. Catalysed by citizens’ wishes to be actively involved in scientific processes, as a result of recent societal trends, it also offers contributions to the rise in tertiary education. In addition, citizen science provides a valuable tool for citizens to play a more active role in sustainable development. This book identifies and explains the role of citizen science within innovation in science and society, and as a vibrant and productive science-policy interface. The scope of this volume is global, geared towards identifying solutions and lessons to be applied across science, practice and policy. The chapters consider the role of citizen science in the context of the wider agenda of open science and open innovation, and discuss progress towards responsible research and innovation, two of the most critical aspects of science today

    The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars

    Get PDF
    At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows

    Maternal position during the first stage of labor: a systematic review

    Get PDF
    BACKGROUND: Policy makers and health professionals are progressively using evidence-based rationale to guide their decisions. There has long been controversy regarding which maternal position is more appropriate during the first stage of labor. This problem has been examined often and repeatedly and the optimal recommendation remains unclear. METHODS: This is a systematic review of the effect of maternal position during the first stage of labor. The main question addressed here is: Does encouraging women to adopt an upright position or to ambulate during the first stage of labor reduce the duration of this stage? All randomized controlled trials carried out to assess this effect were taken into consideration in this review. The following electronic databases were accessed to identify studies: MEDLINE, Popline, the Scientific Electronic Library On-line and the Latin American and Caribbean Health Science Information. Citation eligibility was independently assessed by two reviewers. The methodological quality of each trial was also evaluated independently by two reviewers and a trial under consideration was included only when consensus had been attained. Allocation concealment and screening for the occurrence of attrition, performance and detection biases were considered when studies were appraised. The decision whether to perform data pooling was based on the clinical similarity of studies. RESULTS: The search strategy resulted in 260 citations, of which 18 were assessed in full-text. Nine eligible randomized controlled trials were included in the systematic review. Randomization methods were not fully described in eight studies. The allocation concealment was considered adequate in four studies and unclear in five. The investigators pooled the data from seven studies in which the length of the first stage of labor and results were in favor of the intervention, but the high level of heterogeneity (I(2 )= 88.4%) impaired the meaning of this finding. The intervention did not affect other outcomes studied (mode of delivery, use of analgesia, labor augmentation and condition of the child at birth). CONCLUSION: Adoption of the upright position or ambulation during first stage of labor may be safe, but considering the available evidence and its consistency, it cannot be recommended as an effective intervention to reduce duration of the first stage of labor

    Transitory Microbial Habitat in the Hyperarid Atacama Desert

    Get PDF
    Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: a physico-chemical characterization of the soil habitability after an exceptional rain event, identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity. [Abstract copyright: Copyright © 2018 the Author(s). Published by PNAS.
    • …
    corecore