62 research outputs found
Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells
LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.Peer ReviewedPostprint (published version
Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase
BACKGROUND At interim analysis in a phase 3, observer-blinded, placebo-controlled clinical trial, the mRNA-1273 vaccine showed 94.1% efficacy in preventing coronavirus disease 2019 (Covid-19). After emergency use of the vaccine was authorized, the protocol was amended to include an open-label phase. Final analyses of efficacy and safety data from the blinded phase of the trial are reported.
METHODS We enrolled volunteers who were at high risk for Covid-19 or its complications; participants were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo, 28 days apart, at 99 centers across the United States. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The data cutoff date was March 26, 2021.
RESULTS The trial enrolled 30,415 participants; 15,209 were assigned to receive the mRNA-1273 vaccine, and 15,206 to receive placebo. More than 96% of participants received both injections, 2.3% had evidence of SARS-CoV-2 infection at baseline, and the median follow-up was 5.3 months in the blinded phase. Vaccine efficacy in preventing Covid-19 illness was 93.2% (95% confidence interval [CI], 91.0 to 94.8), with 55 confirmed cases in the mRNA-1273 group (9.6 per 1000 person-years; 95% CI, 7.2 to 12.5) and 744 in the placebo group (136.6 per 1000 person-years; 95% CI, 127.0 to 146.8). The efficacy in preventing severe disease was 98.2% (95% CI, 92.8 to 99.6), with 2 cases in the mRNA-1273 group and 106 in the placebo group, and the efficacy in preventing asymptomatic infection starting 14 days after the second injection was 63.0% (95% CI, 56.6 to 68.5), with 214 cases in the mRNA-1273 group and 498 in the placebo group. Vaccine efficacy was consistent across ethnic and racial groups, age groups, and participants with coexisting conditions. No safety concerns were identified.
CONCLUSIONS The mRNA-1273 vaccine continued to be efficacious in preventing Covid-19 illness and severe disease at more than 5 months, with an acceptable safety profile, and protection against asymptomatic infection was observed
Functional evidence that intercellular adhesion molecule-1 (ICAM-1) is a ligand for LFA-1-dependent adhesion in T cell-mediated cytotoxicity.
Although intercellular adhesion molecule-1 (ICAM-1) has been implicated as a ligand in some LFA-1-dependent adhesion, its importance to T cell function has not been established. The present studies investigate the importance of ICAM-1 for human cytotoxic T lymphocytes (CTL), both in their formation of antigen-independent conjugates (AIC) and in their lysis of targets. Analysis of monoclonal antibody (mAb) inhibition of AIC formation indicate that ICAM-1 mAb 1 blocks (a) AIC formation with some but not all targets; (b) the LFA-1 pathway but not the CD2/LFA-3 pathway of adhesion; (c) by binding to the target cell, not the T cell. In studies of cell-mediated lysis (CML) ICAM-1 mAb inhibited lysis of some targets, such as U-937, that use ICAM-1 predominantly in AIC formation; CML on some other targets is not inhibited by ICAM-1 mAb. These data indicate that ICAM-1 is a ligand for AIC formation, antigen-specific CTL recognition and cytolysis of particular target cells. The data also indicate that ICAM-1 is not used in LFA-1-dependent CTL interactions with all kinds of target cells, suggesting the existence of alternative ligands for LFA-1
Functional evidence that intercellular adhesion molecule-1 (ICAM-1) is a ligand for LFA-1-dependent adhesion in T cell-mediated cytotoxicity.
Although intercellular adhesion molecule-1 (ICAM-1) has been implicated as a ligand in some LFA-1-dependent adhesion, its importance to T cell function has not been established. The present studies investigate the importance of ICAM-1 for human cytotoxic T lymphocytes (CTL), both in their formation of antigen-independent conjugates (AIC) and in their lysis of targets. Analysis of monoclonal antibody (mAb) inhibition of AIC formation indicate that ICAM-1 mAb 1 blocks (a) AIC formation with some but not all targets; (b) the LFA-1 pathway but not the CD2/LFA-3 pathway of adhesion; (c) by binding to the target cell, not the T cell. In studies of cell-mediated lysis (CML) ICAM-1 mAb inhibited lysis of some targets, such as U-937, that use ICAM-1 predominantly in AIC formation; CML on some other targets is not inhibited by ICAM-1 mAb. These data indicate that ICAM-1 is a ligand for AIC formation, antigen-specific CTL recognition and cytolysis of particular target cells. The data also indicate that ICAM-1 is not used in LFA-1-dependent CTL interactions with all kinds of target cells, suggesting the existence of alternative ligands for LFA-1
ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells.
Cell-cell adhesion is essential for many immunological functions. The LFA-1 molecule, a member of a superfamily of adhesion molecules, participates in adhesion which is critical to the function of each of the three major subsets of leukocytes: lymphocytes, monocytes and granulocytes. Putative LFA-1 ligands have been identified functionally in different laboratories using three different monoclonal antibodies that inhibit LFA-1-mediated leukocyte adhesion in particular model systems; however, there may be more than one LFA-1 ligand. We have directly compared the three relevant monoclonal antibodies, and show that each binds to the same molecule, intercellular-adhesion molecule-1 (ICAM-1). Most important, B, T and myeloid cells adhere specifically to purified ICAM-1-coated surfaces; such adhesion has distinctive requirements for Mg2+ and Ca2+. This constitutes biochemical evidence that ICAM-1 functions as a ligand for LFA-1-dependent adhesion by a variety of leukocytes
ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells.
Cell-cell adhesion is essential for many immunological functions. The LFA-1 molecule, a member of a superfamily of adhesion molecules, participates in adhesion which is critical to the function of each of the three major subsets of leukocytes: lymphocytes, monocytes and granulocytes. Putative LFA-1 ligands have been identified functionally in different laboratories using three different monoclonal antibodies that inhibit LFA-1-mediated leukocyte adhesion in particular model systems; however, there may be more than one LFA-1 ligand. We have directly compared the three relevant monoclonal antibodies, and show that each binds to the same molecule, intercellular-adhesion molecule-1 (ICAM-1). Most important, B, T and myeloid cells adhere specifically to purified ICAM-1-coated surfaces; such adhesion has distinctive requirements for Mg2+ and Ca2+. This constitutes biochemical evidence that ICAM-1 functions as a ligand for LFA-1-dependent adhesion by a variety of leukocytes
Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1.
The leukocyte adhesion molecule LFA-1 mediates a wide range of lymphocyte, monocyte, natural killer cell, and granulocyte interactions with other cells in immunity and inflammation. LFA-1 (CD11a/CD18) is a receptor for intercellular adhesion molecule 1 (ICAM-1, CD54), a surface molecule which is constitutively expressed on some tissues and induced on other in inflammation. Induction of ICAM-1 on epithelial cells, endothelial cells and fibroblasts mediates LFA-1-dependent adhesion of lymphocytes. Several lines of evidence have suggested the existence of a second LFA-1 ligand: homotypic adhesion of one cell line was inhibited by a monoclonal antibody to LFA-1, but not by one to ICAM-1; there exists an LFA-1-dependent, ICAM-1-independent pathway of adhesion to endothelial cells; and also, there are some types of target cells in which LFA-1-dependent T-lymphocyte adhesion and lysis are independent of ICAM-1. We have cloned this second ligand, designated ICAM-2, using a novel method for identifying ligands of adhesion molecules. ICAM-2 is an integral membrane protein with two immunoglobulin-like domains, whereas ICAM-1 has five. Remarkably, ICAM-2 is much more closely related to the two most N-terminal domains of ICAM-1 (34% identity) than either ICAM-1 or ICAM-2 is to other members of the immunoglobulin superfamily, demonstrating the existence of a subfamily of immunoglobulin-like ligands that bind the same integrin receptor
- …