122 research outputs found

    Preliminary investigation to estimate soil NAPL retention using parametric pedotransfer functions

    Get PDF
    Organic liquid retention of soils is a primary input variable for modelling the nonaqueous phase liquid transport and behaviour in the subsurface. In environmental and soil physical practice, it is mainly determined by scaling based on the water retention of soils or with charts of average empirical values of organic liquid retention or the fitting parameters of hydraulic functions. Predicting the fitting parameters of organic liquid retention curves with pedotransfer functions might be a promising alternative method, but this topic has only been researched to a limited extent. The investigations gave promising results for the possibility to estimate soil nonaqueous phase liquid retention with parametric pedotransfer functions

    Dataset for creating pedotransfer functions to estimate organic liquid retention of soils

    Get PDF
    Soil properties characterising pressure-saturation relationships (P-S), such as the fluid retention values or the fitting parameter of retention curves are basic input parameters for simulating the behaviour and transport of nonaqueous phase liquids (NAPLs) in subsurface. Recent investigations have shown the limited applicability of the commonly used estimation methods for predicting NAPL retention values in environmental practice. Alternatively, building pedotransfer functions (PTFs) based on the easily measurable properties of soils might give more accurate and reliable results for estimating hydraulic propertie s of soils and enable the utilisation of the wide range of data incorporated in Hungarian and international datasets. In spite of the availability of several well-established PTFs to predict the water retention of soils only a limited amount of research has been done concerning the NAPL retention of soils. Thus, in our study, data from our recent NAPL and water retention mea surements were collected into a dataset containing the basic soil properties as well. Relationships between basic soil propert ies and fluid retention of soils with water or an organic liquid (Dunasol 180/220) were investigated with principal component analysis. NAPL retention of soil samples were determined with PTFs, based on basic soil properties and their d erived values, and using a scaling method. Result of the statistical analysis (SPSS 13.1) revealed that using PTFs could be a promising alte rnative and could give more accurate results compared to the scaling method both for determining the NAPL saturation or the volumetric NAPL retention values of soils

    Dataset for Creating Pedotransfer Functions to Estimate Organic Liquid Retention of Soils

    Get PDF
    Soil properties characterising pressure-saturation relationships (P-S), such as the fluid retention values or the fitting parameter of retention curves are basic input parameters for simulating the behaviour and transport of nonaqueous phase liquids (NAPLs) in subsurface. Recent investigations have shown the limited applicability of the commonly used estimation methods for predicting NAPL retention values in environmental practice. Alternatively, building pedotransfer functions (PTFs) based on the easily measurable properties of soils might give more accurate and reliable results for estimating hydraulic propertie s of soils and enable the utilisation of the wide range of data incorporated in Hungarian and international datasets. In spite of the availability of several well-established PTFs to predict the water retention of soils only a limited amount of research has been done concerning the NAPL retention of soils. Thus, in our study, data from our recent NAPL and water retention mea surements were collected into a dataset containing the basic soil properties as well. Relationships between basic soil propert ies and fluid retention of soils with water or an organic liquid (Dunasol 180/220) were investigated with principal component analysis. NAPL retention of soil samples were determined with PTFs, based on basic soil properties and their d erived values, and using a scaling method. Result of the statistical analysis (SPSS 13.1) revealed that using PTFs could be a promising alte rnative and could give more accurate results compared to the scaling method both for determining the NAPL saturation or the volumetric NAPL retention values of soils

    Felkért hozzászólás „Michéli Erika, Fuchs Márta, Szegi Tamás, Csorba Ádám, Dobos Endre, Szabóné Kele Gabriella: A diagnosztikus szemléletben megújított hazai talajosztályozási rendszer: alapelvek, felépítés, osztályozási szabályok” című vitaanyagához (2018.10.10.)

    Get PDF
    Összefoglalva A hazai talajosztályozás diagnosztikus szemléletű megújítását minden erőmmel és képességemmel támogatom, ám a Vitaanyagban ismertetett módon történő leváltását jó szívvel nem tudom javasolni. Javaslom ugyanakkor az egyes részletkérdések (akár munkacsoportokban történő) megvitatását, a terepi és laboratóriumi módszertan fejlesztését, a módszerek konvertálhatóságának megteremtését, illetve a Vitaanyag módszertanának – mint 1. verziójú javaslatnak – a meglévő módszertannal párhuzamosan történő tesztelését szelvényfeltárások és a talajtérképezési munka során

    Relationship between soil properties and potentially toxic element content based on the dataset of the Soil Information and Monitoring System in Hungary

    Get PDF
    The aim of this paper is to examine the relationship between soil properties and potentially toxic element contents of arable soils based on the dataset of the Soil Information and Monitoring System in Hungary. Nine potentially toxic elements (As, B, Cd, Co, Cr, Cu, Ni, Pb, Zn) were compared with selected soil parameters. We carried out grouping of related soil properties by principal component analysis. The method was suitable to describe the relationship within groups of the soil properties. We studied correlations of the resulting components and potentially toxic elements. The change of Ni content was influenced by the physical properties of the soil (e.g. clay content, field capacity, R = 0.67). Boron is the only one of the examined elements that indicates significant positive correlation with saline-alkali (R = 0.21) parameters. Zn, Co and Cr behaved very similarly; their correlation with components 1 and 2 were the closest

    Role of soil properties in water retention characteristics of main Hungarian soil types

    Get PDF
    Relationship between easily available soil properties and soil water retention at given matric potentials were analysed on brown forest soils, chernozems and meadow soils of Hungarian Detailed Soil Hydrophysical Database (Hungarian acronym: MARTHA). We studied the influence of soil properties displayed on the 1:10000 scale Hungarian soil maps on soil water retention at -0.1, -33, -1500 and -150000 kPa. Continuous (particle size distribution, organic matter content, calcium carbonate content and pH) and category type (ordinal: soil texture, ordinal type information on organic matter content, calcium carbonate content and pH; nominal: soil subtype classes) variables were used in the analyses. The relationships was analysed with random forest method based on conditional inference trees (cforest). Water retention of different soil types was characterized. Importance of soil properties in the prediction of soil water content varies according to soil type and matric potentials
    corecore