1,491 research outputs found
Sharp estimate on the supremum of a class of sums of small i.i.d. random variables
We take a class of functions F with polynomial covering numbers on a measurable space (X,X) together with a sequence of independent, identically distributed X-space valued random variables ξ1,...,ξn, and give a good estimate on the tail distribution of supfε Fj=1nf(ξj) if the expected values E|f(ξ1)| are very small for all fF. In a subsequent paper (Major, in press) we give a sharp bound for the supremum of normalized sums of i.i.d. random variables in a more general case. But the proof of that estimate is based on the results in this work. © 2015 Elsevier B.V. All rights reserved
Sharp tail distribution estimates for the supremum of a class of sums of i.i.d. random variables
We take a class of functions F with polynomially increasing covering numbers on a measurable space (X,X) together with a sequence of i.i.d. X-valued random variables ξ1,...,ξn, and give a good estimate on the tail behaviour of [eq found] if the relations [eq found] hold with some [eq found] for all [eq found]. Roughly speaking this estimate states that under some natural conditions the above supremum is not much larger than the largest element taking part in it. The proof heavily depends on the main result of paper Major (2015). We also present an example that shows that our results are sharp, and compare them with results of earlier papers. © 2015 Elsevier B.V. All rights reserved
Multiple Wiener-ItĂ´ Integrals (revised version)
The goal of this Lecture Note is to prove a new type of limit theorems for normalized sums of strongly dependent random variables that play an important role in probability theory or in statistical physics. Here non-linear functionals of stationary Gaussian fields are considered, and it is shown that the theory of Wiener–Itô integrals provides a valuable tool in their study. More precisely, a version of these random integrals is introduced that enables us to combine the technique of random integrals and Fourier analysis. The most important results of this theory are presented together with some non-trivial limit
theorems proved with their help.
This work is a new, revised version of a previous volume written with the goalof giving a better explanation of some of the details and the motivation behind the proofs. It does not contain essentially new results; it was written to give a better insight to the old ones. In particular, a more detailed explanation of generalized fields is included to show that what is at the first sight a rather formal object is actually a useful tool for carrying out heuristic arguments
A modern valĂłszĂnűsĂ©gszámĂtás nĂ©hány kĂ©rdĂ©sĂ©rĹ‘l = On some problems of the modern probability theory
Kutatásaink 4 tĂ©makörbĹ‘l álltak. Arch Ă©s Garch folyamatok Ă©s általánosĂtásuk Ezek a pĂ©nzĂĽgyi matematikában fontos modellek bonyolult lineáris idĹ‘sorok. HatáreloszlástĂ©teleket Ă©s statisztikai eredmĂ©nyeket bizonyĂtottunk rájuk. Wiener folyamatok Ezek lokális idejĂ©vel Ă©s a közönsĂ©ges bolyongás ehhez kapcsolĂłdĂł problĂ©máival foglalkoztunk. Megadtuk a lokális idĹ‘ Hilbert transzformáltjának Ă©s Cauchy-fĂ©le fĹ‘Ă©rtĂ©kĂ©nek viselkedĂ©sĂ©t leĂrĂł valĂłszĂnűsĂ©gi törvĂ©nyeket, a Wiener excursion Ă©s a Bahadur-Kiefer folyamat legfontosabb tulajdonságait. Wiener folyamat lokális Ă©s magas dimenziĂłs bolyongások tartĂłzkodási ideje között szoros a kapcsolat. Itt ErdĹ‘s Ă©s Taylor eredmĂ©nyeit javĂtottuk. Több erĹ‘s beágyazási tĂ©telt bizonyĂtottunk. VĂ©letlen integrálok VettĂĽk egy normált empirikus mĂ©rtĂ©k önmagával vett direkt szorzatát. Egy többváltozĂłs fĂĽggvĂ©ny eszerinti integráljának es ilyen integrálok szuprĂ©mumának eloszlására adtunk Ă©les becslĂ©st. Ehhez több távoli matematikai elmĂ©letet kellett alkalmaznunk. A bizonyĂtott eredmĂ©nyek lehetĹ‘vĂ© teszik fontos statisztikai mĂłdszerek általánosĂtását. Megmagyarázzák, hogy lehet normált empirikus eloszlásfĂĽggvĂ©ny funkcionáljait Gauss folyamatok funkcionáljaival közelĂteni, Ă©s hol vannak e közelĂtĂ©s határai. VĂ©letlen törvĂ©nyeket teljesĂtĹ‘ számelmĂ©leti fĂĽggvĂ©nyek BebizonyĂtottuk az iterált logaritmus tĂ©tel Ă©lesĂtĂ©sĂ©t Ă©s megmutattuk, hogy n_k\alpha alakĂş számsorozatok diszkrepanciái az n_k sorozat számelmĂ©leti tulajdonságaitĂłl fĂĽggĹ‘ vĂ©letlen törvĂ©nyeket teljesĂtenek. | Our research consists of 4 subjects. Arch and Garch process, their generalizations This is an important model in financial mathematics. They are hard non-linear time series. We proved limit theorems and useful statistical results for them. Wiener processes We dealt with their local time and some occupation time problems of random walks. We gave the probabilistic laws of the Hilbert transform and the Cauchy principle value of their local time. We described the most important properties of the Wiener excursion and Bahadur-Kiefer process. The local time of the Wiener process and occupation time of high dimensional random walk are closely related. In this field we improved the results of Erdos and Taylor. We also proved strong embedding results. Multiple random integrals We took the direct product of a normed empirical distribution with itself. We gave sharp bounds on the integral of a function of several variables with respect to it and on the distribution of the supremum of such integrals. We applied several different mathematical theories in the proofs. Our results make possible to generalize some useful statistical methods. They explain how the functionals of normed empirical distributions can be approximated by Gaussian ones, and where the bounds of such approximations are. Number theoretic functions satisfying probabilistic laws We proved refinements of the law of iterated logarithm and showed that the discrepancies of a series of numbers n_k\alpha satisfy probabilistic laws depending on the diophantine properties of the series n_k
ÉrtágĂtĂłbetĂ©tek lĂ©zersugaras hegesztĂ©se
The authors give an overview about the application of welding, mainly the laser welding related to the fabrica-tion of stents. The paper demonstrates the welding of markers and the stents, which are made of wire. |
A cikkben a szerzĹ‘k áttekintĂ©st adnak az Ă©rtágĂtĂłbetĂ©tek gyártásához kapcsolĂłdĂł hegesztĂ©si, fĹ‘leg lĂ©zersugaras hegesztĂ©si alkalmazásokrĂłl. Bemutatják a markerek hegesztĂ©sĂ©t Ă©s a huzalbĂłl kĂ©szĂĽlt Ă©rtágĂtĂłbetĂ©tek gyártását
Depth sensors in screening of scoliosis
DOI:Â 10.17489/biohun/2013/1/0
- …