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Preface

One of the most important problems in probability theoryhs tnvestigation of
the limit distribution of partial sums of appropriately naalized random variables.
The case where the random variables are independent ig ¥eéll understood.
Many results are known also in the case where independenepliced by an
appropriate mixing condition or some other “almost indefeace” property. Much
less is known about the limit behaviour of partial sums oflyedependent random
variables. On the other hand, this case is becoming more ane important, not
only in probability theory, but also in some applicationstatistical physics.

The problem about the asymptotic behaviour of partial sufrdependent ran-
dom variables leads to the investigation of some very caraf@d transformations
of probability measures. The classical methods of prolghiieory do not seem
to work for this problem. On the other hand, although we aitevetry far from a
satisfactory solution of this problem, we can already preseme nontrivial results.

The so-called multiple Wiener-étintegrals have proved to be a very useful tool
in the investigation of this problem. The proofs of almostiglorous results in this
field are closely related to this technique. The notion oftipld Wiener—I6 inte-
grals was worked out for the investigation of non-lineardiimnals over Gaussian
fields. It is closely related to the so-called Wick polynolsiahich can be consid-
ered as the multi-dimensional generalization of Hermitgmpamials. The notion of
Wick polynomials and multiple Wiener-étintegrals were worked out at the same
time and independently of each other. Actually, we discussodified version of
the multiple Wiener—h integrals in greatest detail. The technical changes rmkede
the definition of these modified integrals are not esser@althe other hand, these
modified integrals are more appropriate for certain ingastons, since they enable
us to describe the action of shift transformations and tdyappme sort of random
Fourier analysis. There is also some connection betweetiphelViener—I6 inte-
grals and the classical stochastit ilhtegrals. The main difference between them is
that in the first case deterministic functions are integtassd in the second case
so-called non-anticipating functionals. The consequefhdeis difference is that no
technical difficulty arises when we want to define multipleer—16 integrals in
the multi-dimensional time case. On the other hand, a ldags of nonlinear func-
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viii Preface

tionals over Gaussian fields can be represented by meansltpleniWiener—IH
integrals.

In this work we are interested in limit problems for sums opeledent random
variables. It is useful to consider this problem togethetviis continuous time
version. The natural formulation of the continuous timesian of this problem
can be given by means of generalized random fields. Constguenalso have to
discuss some questions about them.

| have not tried to formulate all the results in the most gahfarm. My main
goal was to work out the most important techniques needetfianrivestigation
of such problems. This is the reason why the greatest pahi®fitork deals with
multiple Wiener—Id integrals. | have tried to give a self-contained expositbthis
subject and also to explain the motivation behind the result

| had the opportunity to participate in the Dobrushin—Sg&ninar in Moscow.
What | learned there was very useful also for the preparatidhi® Lecture Note.
Therefore | would like to thank the members of this seminamfbat | could learn
from them, especially P. M. Bleher, R. L. Dobrushin and YaStai.

Preface to the Second Edition.

This text is a slightly modified version of my Lecture Nétiltiple Wiener—Id in-
tegrals with applications to limit theorenmuiblished in the_ecture Notes in Math-
ematicsseries (number 849) of the Springer Verlag in 1981. | decigedrite a
revised version of this Lecture Note after a special coutseld about its subject
in the first semester of the academic year 2011-2012 at theetsity of Szeged.
Preparing for this course | observed how difficult the regdf formulas in this
Lecture Note was. These difficulties arose because thisiteebtote was written at
the time when the gX program still did not exist, and the highest technical leve
of typing was writing on an IBM machine that enabled one teetppside the usual
text also mathematical formulas. But the texts written iotsa way are very hard
to read. To make my text more readable | decided to retypeiibégns of the gX
program. But it turned out that a real improvement of the tethands much more
than producing nice, readable formulas. To make a realtgbe¢rsion of this work
| also had to explain better the results and definitions togretvith the ideas and
motivation behind them. Besides, | had to make not only meeelable formulas,
but also more readable explanations. The reader must seelapeint of the dis-
cussion what is just going on, and why. In the new version isf Work | tried to
satisfy these demands. Naturally, | also corrected thestfound. At some points
| had to insert a rather long explanation in the proof, beeauset such a statement
which seemed to be trivial at the first sight, but its justifica demanded a detailed
discussion. | hope that these insertions did not make thk lees transparent.
There appeared many new results about the subject of thiaresdote since its
first appearance. The question arose naturally whetheruldhiesert them to the
new edition of this work. Finally | decided to make no essarthanges in the text,
to restrict myself to the correction of the errors | foundd &m give a more detailed
explanation of the proofs where | felt that it is useful. Inkimg such a decision |
was influenced by a Russian proverb which says: ‘Luchshekiragpshego’. | tried



Preface ix

to follow the advice of this proverb. (I do not know of an Emsfilicounterpart of this
proverb, but it has a French version: ‘Le mieux est 'ennembikn’.)

I made one exception. | decided to explain those basic rotiomd results in
the theory of generalized functions which were applied adlder version of this
work in an implicit way. In particular, | tried to explain wittheir help how one
gets those results about the spectral representation obtlegiance function of sta-
tionary random fields that | have presented under the n&uoelsner’s theorerand
Bochner—Schwartz theorerihis extension of the text is contained in the attach-
ments to Chapters 1 and 3. In the first version | only referoeslwork where these
notions and results can be found. But now | found such an agproot satisfactory,
because these notions and results play an important rotame arguments of this
work. Hence | felt that to make a self-contained presemaifdhe subject | have to
explain them in more detail.

The first edition of this Lecture Note appeared long time dgbthe main ques-
tion discussed in it, the description of the limit behaviofiappropriately normal-
ized partial sums of strongly dependent random variablesiged an open prob-
lem. Also the method applied in this work remained an impartaol in the study
of such problems. Hence a self-contained explanation afrtbery which provides
a good foundation for this method is useful. By my hopes tleisture Note contains
such an explanation, and therefore it did not become outtef d&is was the main
argument for myself to write a new version of this work whetedd to present a
better and more accessible discussion.

I would like to write some words about the last chapter of wigk, where some
results are discussed that seemed to be important at theofimeiting the first
version. | would mention two of them which later turned oub®really important.
The first one is the Nelson—Gross inequality which later @ibgn important role in
the theory of the so-called hypercontractive and logaiith&oboliev inequalities.
The second one is a method for construction of non-trividdsmilar fields worked
out in a paper of Kesten and Spitzer. Several important lingbrems are based on
the ideas of this paper. It is worth mentioning that it wasaRdlL'vovich Dobrushin
who called my attention to these results, and he emphadig@dimportance. So |
would like to finish this preface with a personal remark ationt.

This work is the result of some joint research with Rolandlieh Dobrushin.
Although the book was written by me alone, Dobrushin’s infleeeis very strong
in it. | have learned very much from him. It is rather diffictdt explain what one
could learn from him, because it was much more than just sesdts or mathe-
matical arguments. There was something beyond it, somalwalv which is hard
to explain. If | could give back something from what | had kedt from him in this
Lecture Note, then this would justify the work on it by itself

Budapest, 15 August 2013
Péter Major






Chapter 1
On a Limit Problem

We begin with the formulation of a problem which is importaoth for probability
theory and statistical physics. The multiple Wiengd-ttegral proved to be a very
useful tool at the investigation of this problem.

Let us consider a set of random variabfgsn € Z,, whereZ, denotes thes-
dimensional integer lattice, and let us study their prapertSuch a set of random
variables will be called ay-dimensional) discrete random field. We shall be mainly
interested in so-called stationary random fields. Let ualréteir definition.

Definition of Discrete (Strictly) Stationary Random Fields A set of random vari-
ablesé,, n€ Z,, is called a (strictly) stationary discrete random field if

(Enlv R Enk) é (En1+m7 L) Enk+m)

forallk=1,2,...and n,...,nx, me Z,, where2 denotes equality in distribution.

Let us also recall that a discrete random fi&ldn € Z,, is called Gaussian if for
every finite subsefny,...,n} C Zy the random vecto(én,,..., &) is normally
distributed.

Given a discrete random fielf}, n € Z,, we define for alN = 1,2, ... the new
random fields

ZV=A'Y & N=12.., nez, (1.1)
jeBY
where

BN ={j: jeZy, nIN<|jV<(nDrNi=12...,v},

andAy, Ay > 0, is an appropriate norming constant. The superscdphotes the
i-th coordinate of a vector in this formula. We are interestethe question when
the finite dimensional distributions of the random fiek}$ defined in (1.1) have
a limit asN — oo, In particular, we would like to describe those random filfls
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n € Zy, which appear as the limit of such random fief}s This problem led to the
introduction of the following notion.

Definition of Self-similar (Discrete) Random Fields.A (discrete) random field,,
n e Zy, is called self-similar with self-similarity parameter if the random fields
ZN defined in (1.1) with their help and the choicg A N satisfy the relation

(Engseeorn) 2 (2N, 2N (1.2)

foralN=1,2,...andn,...,ng € Zy.

We are interested in the choiég, = N9 with somea > 0 in the definition of
the random variableg) in (1.2), because under slight restrictions, relation)(1.2
can be satisfied only with such norming constaiys A central problem both in
statistical physics and in probability theory is the dgsiton of self-similar fields.
We are interested in self-similar fields whose random véggbave a finite second
moment. This excludes the fields consisting of i.i.d. rand@miables with a non—
Gaussian stable law.

The Gaussian self-similar random fields and their Gaussiage of attraction
are fairly well known. Much less is known about the non-Garssase. The prob-
lem is hard, because the transformations of measuresRfrerinduced by for-
mula (1.1) have a very complicated structure. To get intergsesults in some cases
we shall define the so-called subordinated fields below. @mwecisely, we define
the fields subordinated to a stationary Gaussian field.)$e cAsubordinated fields
the Wiener—Id integral is a very useful tool for investigating the tramsfiation
defined in (1.1). In particular, it enables us to construgt+®aussian self-similar
fields and to prove non-trivial limit theorems. All known s are closely related
to this technique.

LetX,, n € Z,, be a stationary Gaussian field. We define the shift transftoms
Tm, M€ Zy, over this field by the formuld@ X, = Xn.om for alln,me Z,. Let 57
denote theeal Hilbert space consisting of the square integrable randamahblas
measurable with respect to timealgebraZ = %(Xn, n € Zy). The scalar product
in 27 is defined asé,n) =E&n, &, n € 2. The shift transformation&,, me Z,,
can be extended to a group of unitary shift transformatiores 7 in a natural
way. Namely, ifé = f(Xn,,...,Xq ) then we defindmé = f(Xq,4m, ..., Xnem)- It
can be seen thdl€ || = || Tné||, and the above considered random varialflexe
dense in’Z. (A more detailed discussion about the definition of shiftmgpors and
their properties will be given in Chapter 2 inRemarkafter the formulation of
Theorem 2C. Here we shall define the shijf¢, m e Z,, of all random variable§
which are measurable with respect to thalgebraz(Xn, n € Z,), i.e. & does not
have to be square integrable.) Heflgecan be extended to the whole spaiéby
L, continuity. It can be proved that the norm preserving tramsftionsTy, me Z,,
constitute a unitary group i, i.e. Toym = Ta Ty for all n, me Z,,, andTp = Id.
Now we introduce the following

Definition of Subordinated Random Fields.Given a stationary Gaussian fielg X
n € Zy, we define the Hilbert space®” and the shift transformations,f me Z,,
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over 77 as before. A discrete stationary fiedd is called a random field subordi-
nated to X if &y € 27, and & = &namforalln, me Z,,.

We remark tha€g determines the subordinated fielflscompletely, since,, =
Théo. Later we give a more adequate description of subordinagétsfby means of
Wiener—Ib integrals. Before working out the details we formulate ¢batinuous
time version of the above notions and problems. In the cantis time case it is
more natural to consider generalized random fields. To éx{fiie idea behind such
an approach we shortly explain a different but equivalersicdption of discrete
random fields. We present them as an appropriate set of ramdoables indexed
by the elements of a linear space. This shows some similaiitythe generalized
random fields to be defined later.

Let ¢n(x), n € Zy, n= (ng,...,ny), denote the indicator function of the cube
M —2m+3)x-x[n,—1,n +13), with centem= (ny,...,n,) and with edges
of length 1, i.e. lethy(X) = 1, X = (X1,...,%,) € R”, if nj — 3 < x; < nj+ 1 for all
1< j <v, and letpn(x) = 0 otherwise. Define the linear spageof functions on
R” consisting of all finite linear combinations of the fofiej ¢y, (x), nj € Zy, with
the above defined functiors(x) and real coefficients;. Given a discrete random
field &, n € Zy, define the random variablég¢) for all ¢ € @ by the formula
&(9) =3¢ &n; if o(x) = > Cj¢n; (x). In particular,é (¢n) = & for all n€ Zy,. The
identity & (c1¢ + coi) = c1&(9) + c2€ () also holds for allp, € @ and real
numbersc; andco.

Let us also define the functigh™Aw)(x) = 2 () for all functions¢ € @ and
positive integerdN = 1,2, ..., with some appropriately chosen constafgs> 0.

Observe tha€ (¢N) = ZN with the random variabl@\ defined in (1.1). Al
previously introduced notions related to discrete randeihdgican be reformulated
with the help of the set of random variabléég), ¢ € @. Thus for instance the
random fieldy, n € Z,, is self-similar with self-similarity parameter if and only if

E(PNNDY L g(p)forall g € ®andN = 1,2, ... (To see why this statement holds
observe that the distributions of two random vectors adraed only if every linear
combination of their coordinates have the same distribufidnis follows from the
fact that the characteristic function of a random vectoedgines its distribution.)

It will be useful to define the continuous time version of déte random fields
as generalized random fields. The generalized random figldserdefined as a set
of random variables indexed by the elements of a linear spafnctions. They
show some similarity to the class of random varialdég), ¢ € @, defined above.
The main difference is that instead of the spdta different linear space is chosen
for the parameter set of the random field. We shall choosedfeaked Schwartz
space for this role.

Let ¥ = .4, be the Schwartz space of (real valued) rapidly decreasingoth
functions onR". (See e.g. [16] for the definition of,. | shall present a more de-
tailed discussion about the definition of the spacetogether with the topology
introduced in it in the adjustment to Chapter 1.) Generaflg takes the space of
complex valued, rapidly decreasing, smooth functions asplaces’, but we shall
denote the space ofal valued rapidly decreasing, smooth functions l5§ if we
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do not say this otherwise. We shall omit the subscvifitit leads to no ambiguity.
Now we introduce the notion of generalized random fields.

Definition of Generalized Random FieldsWe say that the set of random variables
X(¢), ¢ € .7, is a generalized random field over the Schwartz sp#cef rapidly
decreasing, smooth functions if:

(@) X(app1+axp2) =arX(d1)+axX(¢2) with probability 1 for all real numbers
a; and g and ¢, € .7, 92 € .7. (The exceptional set of probability 0 where this
identity does not hold may depend on &, ¢1 and ¢,.)

(b)  X(¢n) = X(¢) stochastically ifp, — ¢ in the topology of7.

We also introduce the following definitions.

Definition of Stationarity and Gaussian Property of a Generdized Random
Field and the Notion of Convergence of Generalized Random Elds in Dis-
tribution. The generalized random field % {X(¢), ¢ € .’} is stationary if

X(¢) 2 X(Ti¢) for all ¢ €. and te RV, where TP(x) = ¢p(x—t). It is Gaus-
sian if X(¢) is a Gaussian random variable for afl € .. The relation X Z Xo
as n— o holds for a sequence of generalized random fielgsné& 0,1,2,.. ., if
Xn(®) 2 Xo(¢) forall ¢ €.7, whereZ denotes convergence in distribution.

Given a stationary generalized random fi¥lénd a functiomA(t) > 0,t > 0, on
the set of positive real numbers we define the (stationandam fieldsX? for all
t > 0 by the formula

XAQ)=X(6), pe7,  wheredf=AD (7). (13
We are interested in the following

Question. When does a generalized random fieltl éist such that X Z x* as
t — oo (orast— 0)?

In relation to this question we introduce the following

Definition of Self-similarity. The stationary generalized random field X is self-

similar with self-similarity parametea if XA(¢) £ X(¢) forall ¢ €. andt>0
with the function A&t) =t“.

To answer the above question one should first describe thergjered self-
similar random fields.

We try to explain the motivation behind the above definitiddiven an ordinary
random fieldX(t), t € R, and a topological spaeg consisting of functions over"
one can define the random variabl®) = [z ¢ (1)X(t) dt, ¢ € &. Some difficulty
may arise when defining this integral, but it can be overcanadlinteresting cases.
If the space# is rich enough, and this is the casedif= .7, then the integrals
X(¢), ¢ € &, determine the random procesg). The set of random variableg ¢),
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¢ € &, is a generalized random field in all nice cases. On the otdued hthere are
generalized random fields which cannot be obtained by iategy ordinary random
fields. In particular, the generalized self-similar randfieids we shall construct
later cannot be interpreted through ordinary fields. Thevala@finitions of various
properties of generalized fields are fairly natural, coasity what these definitions
mean for generalized random fields obtained by integratidonary fields.

The investigation of generalized random fields is simplentthat of ordinary
discrete random fields, because in the continuous case yoraetry is available.
Moreover, in the study or construction of discrete randotdgigeneralized random
fields may play a useful role. To understand this let us rentzak if we have a
generalized random fiel(¢), ¢ € .7, and we can extend the spagécontaining
the test functiong to such a larger linear spac& for which @ ¢ 7 with the
above introduced linear spadg then we can define the discrete random fi{¢),
¢ € @, by a restriction of the space of test functions of the gdire@ random
field X(¢), ¢ € .7. This random field can be considered as the discretizatitmeof
original generalized random fieXl(¢), ¢ € .~.

We finish this chapter by defining the generalized subordthaandom fields.
Then we shall explain the basic results about the Schwaatzesyy and generalized
functions in a separate sub chapter.

Let X(¢), ¢ € .7, be a generalized stationary Gaussian random field. The for-
mulaTX(¢)) = X(Ti¢), Ttd(X) = ¢ (x—1), defines the shift transformation for all
t € RV. Let# denote the real Hilbert space consisting of #he- Z(X(¢), ¢ € .¥)
measurable random variables with finite second moment. fifietiansformation
can be extended to a group of unitary transformations g¢esimilarly to the dis-
crete case. This will be explained in more detail in the nbaspter.

Definition of Generalized Random Fields Subordinated to a Geeralized Sta-
tionary Gaussian Random Field.Given a generalized stationary Gaussian ran-
dom field X¢), ¢ € ., we define the Hilbert spac#” and the shift transforma-
tions T, t € RV, over.Z as above. A generalized stationary random fi{g), ¢ €

.7, is subordinated to the field(¢), ¢ € .7, if £(¢) € 77 and TE(¢) = &(Tid)
forall ¢ €. andtc R’, and E&¢p) — &(9)]? — 0if ¢ — ¢ in the topology of
7

1.1 A Brief Overview About Some Results on Generalized
Functions

Let us first describe the Schwartz spacésind.&”¢ in more detail. The spacg’® =
()¢ consists of those complex valued functions/ofariables which decrease at
infinity, together with their derivatives, faster than amglymomial degree. More
explicitly, ¢ € .7 for a complex valued functiog of v variables if

EERT
ke K, o Qv

Xl ..-XV W(ﬁ(Xl,...,Xv) SC(kl,...,kv,ql7...,qV)
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for all pointx = (xg,...,%y) € R¥ and vectorgky,...,ky), (q1,...,qy) with non-
negative integer coordinates with some constdki, . .. ,ky,q1,...,qy) which may
depend on the functiog. This formula can be written in a more concise form as

IXDY¢ (x)| < C(k,q) with k= (kq,...,k,) andq= (qu,...,q),

ag+g
wherex = (xg,...,%), X = X...x¥ and D9 = %“11._.7‘5;' The elements of the

space. are defined similarly, with the only difference that they azal valued
functions.

To define the space®” and.° we still have to define the convergence in them.
We say that a sequence of functighise .7¢ (or ¢, € .) converges to a function
¢ if

lim sup(L+ [x%)*|D%n(x) — DY (x)| = 0.
N=%ycRY

forallk=1,2,... andg= (gs,...,qyv). It can be seen that the limit functighis
also in the space”® (or in the space”).

A nice topology can be introduced in the spag& (or .#’) which induces the
above convergence. The following topology is an appropicabice. Let a basis of
neighbourhoods of the origin consist of the sets

U(kae)={9: max1+[x?)¥ D% ()| <e

withk=0,1,2,..., 9= (qs,...,qv) with non-negative integer coordinates ang
0, where|x|? = x2 +--- +x2. A basis of neighbourhoods of an arbitrary function
¢ € .7 (or ¢ €.¥) consists of sets of the forgh+U (k, g, €), where the class of sets
U(k,q,€) is a basis of neighbourhood of the origin. The fact that thevemgence
in . has such a representation, (and a similar result holds ire saiher spaces
studied in the theory of generalized functions) has a grepbitance in the theory
of generalized functions. We also have exploited this faGhapter 6 of this Lecture
Note. Topological spaces with such a topology are calleditzdnly normed spaces.

The space of generalized function$’ consists of thecontinuouslinear maps
F.: . —CorF: .#¢— C, whereC denotes the linear space of complex numbers.
(In the study of the spacg”’ we omit the upper indeg, i.e. we do not indicate
whether we are working in real or complex space when thisesans problem.) We
shall write the mag-(¢), F € ./ and¢ € . (or ¢ € .°) in the form(F, ¢).

We can define generalized functiofisc .’ by the formula

(F.$) :/qu(x)dx forallpe.# orpe.°

with a functionf such thatf (1 [x|2)~P|f (x)| dx < e with somep > 0. (The upper
script — denotes complex conjugate in the sequel.) Suchidnats are called reg-
ular. There are also non-regular functionals in the sp#teAn example for them
is the d-function defined by the formulgd, ¢) = ¢ (0). There is a good description
of the generalized functioris € ., (see the book I. M. Gelfand and G. E. Shilov:
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Generalized functions, Volume 2, Chapter 2, Chapter 4)waudo not need this
result, hence we do not discuss it here. Another importaestipn in this field not
discussed in the present note is about the interpretatian ugual function as a
generalized function in the case when it does not define daefunction in.”
because of its strong singularity in some points. In suclesasme regularization
can be applied. It is an important problem in the theory ofegalized functions to
define the appropriate generalized functions in such casés,does not appear in
the study of the problems in this work.

The derivative and the Fourier transform of generalized:fions are also de-
fined, and they play an important role in some investigatibmshe definition of
these notions for generalized functions we want to presérveld definition if nice
regular functionals are considered for which these notiwaie already defined in

classical analysis. Such considerations lead to the deﬁrﬂ%j F.¢)=—(F, g—)‘z)
of the derivative of generalized functions. We do not disdbss definition in more
detail, because here we do not work with the derivatives négdized functions.
The Fourier transform of generalized functionSimppears in our discussion, al-
though only in an implicit form. The Bochner-Schwartz therordiscussed in Chap-
ter 3 actually deals with the Fourier transform of geneealifunctions. Hence the
definition of Fourier transform will be given in more detail.
We shall define the Fourier transform of a generalized fonchy means of a
natural extension of the Parseval formula, more expliciflg simplified version of
it, where the same identity

L 09a00dx= s [ Tt

is formulated withf(u) = [z €Y f(x)dx and glu) = v €“¥g(x)dx. But now
we consider a pair of functlor(a‘ g) with different propernes We demand thiat
should be an integrable function, agd .#°. (In the original version of the Parseval
formula bothf andg areL, functions.)

The proof of this identity is simple. Indeed, since the fimety € . can be
calculated as the inverse Fourier transform of its Founandformge .7°, i.e.

g(x) = ¥g(u) du, we can write
/ei(””g(u)du} dx

/f(x) dx_/f [

='/g<u)[(2;)v/eux> ()dx} du

Let us also remark that the Fourier transfofm- f is a bicontinuous map from
¢ to &°. (This means that this transformation is invertible, anthbbe Fourier
transform and its inverse are continuous maps frgthto .C.) (The restriction
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of the Fourier transform to the spacé of real valued functions is a bicontinuous
map from.” to the subspace a¥° consisting of those functionse .~ for which
f(—x) = f(x) forallxe R".)

The above results make natural the following definition af Hourier trans-
form F of a generalized functioR € ..

(F,$) = (2m)"(F,¢) forall ¢ € C.

Indeed, ifF € .7’ thenF is also a continuous linear map oA, i.e. it is also an
element of”’. Besides, the above proved version of the Parseval forrmybéies
that if we consider an integrable functidron R’ both as a usual function and as a
(regular) generalized function, its Fourier transformeagrin the two cases.

There are other classes of test functions and spaces ofadiegedrfunctions stud-
ied in the literature. The most popular among them is theesgaaf infinitely many
times differentiable functions with compact support asdiital space’’, the space
of continuous linear transformations on the spate(These spaces are generally
denoted by? andZ’ in the literature, although just the book [16] that we uselas o
main reference in this subject applies the notatighand.#” for them.) We shall
discuss this space only very briefly.

The space? consists of the infinitely many times differentiable fucts with
compact support. Thus it is a subspaces6f A sequencep, € Z,n=12,...,
converges to a functiog, if there is a compact se&& ¢ RV which is the support
of all these functionsp,, and the functiongp, together with all their derivatives
converge uniformly to the functioy and to its corresponding derivatives. It is not
difficult to see that alsg € 2, and if the function#, converge ta in the space7,
then they also converge tbin the space”’. Moreover,Z is an everywhere dense
subspace of”. The space?’ consists of the continuous linear functionalszn

The results describing the behaviour@fand 2’ are very similar to those de-
scribing the behaviour of” and.s”’. There is one difference that deserves some
attention. The Fourier transforms of the functionsZirmay not belong t@7. The
class of these Fourier transforms can be described by méaome results in com-
plex analysis. A topological spacg” can be defined on the set of Fourier trans-
forms of the functions from the spac¢e If we want to apply Fourier analysis in the
spaceZ, then we also have to study this spa#eand its dual spac€”. | omit the
details.



Chapter 2
Wick Polynomials

In this chapter we consider the so-called Wick polynomialsnulti-dimensional
generalization of Hermite polynomials. They are closelstexl to multiple Wiener—
Itd integrals.

LetX,t € T, be a set of jointly Gaussian random variables indexed byanpa
eter sefl. LetEX = 0 for allt € T. We define the real Hilbert spaceg and. 7
in the following way: A square integrable random variablénis7# if and only if
it is measurable with respect to tleealgebraz = #(X;, t € T), and the scalar
product in.#Z is defined agé,n) =E&n, &, n € 2. The Hilbert spaceq C 7
is the subspace of” generated by the finite linear combinatigns; X;, tj € T. We
consider only such sets of Gaussian random varialés which 777 is separable.
OtherwiseX;, t € T, can be arbitrary, but the most interesting case for us imwhe
T =% orZ,,andX,t € T, is a stationary Gaussian field.

LetY1,Yo,... be an orthonormal basis i##7. The uncorrelated random variables
Y1,Y2,... are independent, since they are (jointly) Gaussian. Maeov

BYYa,...) = B(X, tET).

Let Hn(x) denote then-th Hermite polynomial with leading coefficient 1, i.e. let
Hn(X) = (—1)“&2/2%(@)‘2/2). We recall the following results from analysis and
measure theory.
Theorem 2A. The Hermite polynomials tix), n=0,1,2,..., form a complete or-
thogonal system inj_(R,@, ﬁe*xz/zdx). (Here Z denotes the Bores-algebra
on the real line.)

Let (Xj, Zj, 1), i = 1,2,..., be countably many independent copies of a prob-
ability space(X, 2", u). (We denote the points of; by x;.) Let (X*, 2, u%) =

M (Xj, Zj, uj). With such a notation the following result holds.
=1
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Theorem 2B.Let ¢o, ¢1,-.., $o(X) = 1, be a complete orthonormal system in the
Hilbert space L(X, 2", u). Then the functiong] ¢y, (X;), where only finitely many
j=1

indices k differ from 0, form a complete orthonormal basis if(K®, 2™, u®).

Theorem 2C.Let ¥, Y>,... be random variables on a probability spa(@, <7, P)
taking values in a measurable spaeg 27). Leté be areal valued random variable
measurable with respect to tlealgebra (Y1, Ys,...), and let(X*, 2°®) denote
the infinite productX x X x ---, 2" x 2" x ---) of the spacgX, 2Z") with itself.
Then there exists a real valued, measurable function f osphee(X*, 2°) such
thatE = f(Yl,Yz, . )

Remark.Let us have a stationary random fieXd(w), n € Z,. Theorem 2C en-
ables us to extend the shift transformati@n, defined asTmXn(w) = Xntm(w),

n, me Zy, for all random variableg (w), measurable with respect to thealgebra
PB(Xn(w), n€ Zy). Indeed, by Theorem 2C we can wréw) = f (X,(w), n€ Zy),

and defin€Tné (w) = f(Xnim(w), n € Zy). We still have to understand, that al-
though the functionf is not unique in the representation of the random vari-
able & (w), the above definition oTé (w) is meaningful. To see this we have to
observe that iff{(Xp(w), n € Zy) = f2(Xn(w), n € Zy) for two functions f; and

fo with probability 1, then alsdi(Xnim(w), n € Zy) = f2(Xntm(w), n € Zy) with
probability 1 because of the stationarity of the random fi§Jttw), n € Z, . Let us

also observe thaf (w) 4 Tmé (w) for all me Z,. Besides,Ti, is a linear operator
on the linear space of random variables, measurable wigieot$o theg-algebras
P (Xn, n € Zy). If we restrict it to the space of square integrable randorabées,

then Ty, is a unitary operator, and the operatdps m € Z,, constitute a unitary
group.

Let a stationary generalized random figle= {X(¢), ¢ € .7} be given. The shift
Ti& of a random variablé, measurable with respect to threalgebraz(X(¢), ¢ €
) can be defined for all € RV similarly to the discrete case with the help of
Theorem 2C and the following result. §fe B(X(¢), ¢ € .¥) for a random vari-
able &, then there exists such a countable suljget ¢»,...} C . (depending on
the random variablé) for which & is B(X(¢1), X(¢2),...) measurable. (We write
E(w) = F(X(¢1)(w),X(¢2)(w),...) with appropriate functiond, and ¢; € .7,
$2 €.7,..., and define the shif;é asTi&(w) = f(X(Ti¢1)(w), X(Tid2)(w),...),
whereTi ¢ (x) = ¢ (x—t) for ¢ € .7.) The transformation%, t € R, are linear op-
erators over the space of random variables measurableegitiect to ther-algebra
B(X(9), ¢ € ) with similar properties as their discrete counterpart.

Theorems 2A, 2B and 2C have the following important consegee

Theorem 2.1.Let ¥1,Y>,... be an orthonormal basis in the Hilbert spacé de-
fined above with the help of a set of Gaussian random variakles€ T. Then
the set of all possible finite products kY, ) ---Hj, (Y, ) is a complete orthogonal
system in the Hilbert spac#” defined above. (Herejit) denotes the j-th Hermite
polynomial.)
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Proof of Theorem 2.1By Theorems 2A and 2B the set of all possible prod-
ucts [ Hy (xj), where only finitely many indiceg; differ from 0, is a com-
j=1

S
plete orthonormal system ih; | R®, %%, [ e\% dxj |. SinceB(X, teT) =
j=1 ver
P#(Y1,Y2,...), Theorem 2C implies that the mappifigks, Xz, ...,) — f(Y1,Yz,...)
) 7X2/2
; - ; © e ] _
is a unitary transformation frorh, | R*, # ,j|;|l o dx; | to 7. (We call a

transformation from a Hilbert space to another Hilbert gpanitary if it is norm
preserving and invertible.) Since the image of a completieogional system un-
der a unitary transformation is again a complete orthogsystem, Theorem 2.1 is
proved. O

Let s7zn C 27, n=1,2,..., (with the previously introduced Hilbert space’)
denote the Hilbert space which is the closure of the lineacsonsisting of the
element$h (X, . .., %), whereR, runs through all polynomials of degree less than
or equal ton, and the integem and indicedy, ...ty € T are arbitrary. Let’ =
o consist of the constant functions, and & = 72n© #~n_1,N=1,2,...,
wheres denotes orthogonal completion. It is clear that the Hillspeices73 given
in this definition agrees with the previously defined Hiltsgraces4. If &1,...,ém€E
4, and Py(Xq,...,Xm) is a polynomial of degre@, thenPy(&1,...,&m) € H#n.
Hence Theorem 2.1 implies that

H = Ao+ A+ Hot -+, (2.1)

where+ denotes direct sum. Now we introduce the following

Definition of Wick Polynomials. Given a polynomial Pxy, ..., xn) of degree n and
a set of (jointly) Gaussian random variablés, ..., &y € 71, the Wick polynomial
:P(&1,...,&m): is the orthogonal projection of the random variablé&p, ..., &m)
to the above defined subspa#g of the Hilbert spaces” .

It is clear that Wick polynomials of different degree arehogonal. Given some
&1,...,&m € o4 define the subspace®.n(&y,...,&m) C #n,n=1,2,..., as the
set of all polynomials of the random variablés ..., é;, with degree less than or
equal ton. Let 5#o(&1,...,ém) = 50(&1,...,Em) = 5%, and I4(&1,...,.¢m) =
(&1, &m) © Hn_1(&1, ..., &m). With the help of this notation we formulate
the following

Proposition 2.2.Let P(xy,...,Xn) be a polynomial of degree n. Then the random
polynomial : P(&1,...,&ém): equals the orthogonal projection of(&;,...,&m) to
Ha(&1s -, ém).

Proof of Proposition 2.2Let : P(&1,...,&m): denote the projection of the random
polynomialP(&1,...,&m) to H4(&1,. .., &m). Obviously

P(fl? ey Em)_ . P(El7 ey Em) € %én—l(fla ey Em) g 1%éﬂ—l’
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Hence in order to prove Proposition 2.2 it is enough to shawfdr alln € 7%,

E:P(é1,....ém): n =0, (2.2)

since this means thaP(¢y,...,&m): is the orthogonal projection &f(&1,...,ém) €
%n '[0 %nfl.
Let €1,&,... be an orthonormal system i¥#7, also orthonormal tdy, ..., &m,

m o) .
and such thay,...,&m, €1, &, ... formabasisinA. If n = Ei'i Mn s}(‘ with such
=1 j=1

exponentd; andk; thaty | 4 5 kj < n— 1, then (2.2) holds for this random variable
n because of the independence of the random varidplasde;. Since the linear
combinations of such are dense iZZ,_1, formula (2.2) and Proposition (2.2) are
proved. ad

Corollary 2.3. Letéq,...,ém be an orthonormal system i3, and let
P(X1,...,Xm) = Zle’,_',jmle . x,JTT

be a homogeneous polynomial, i.e. lgtH- - - jm = n with some fixed number n for
all sets(j,..., jm) appearing in this summation. Then

P&, ém) =) CjjmHja (§1) -+ Hj (Sm).-

In particular,
(&M =Hp(§) fEesq, andEE2 =1

Remark Although we have defined the Wick polynomial (of degrgdor all poly-
nomials P(&1,...,&ém) of degreen, we could have restricted our attention only
to homogeneous polynomials of degmeesince the contribution of each terms
c(jl,...jm)Ell-uEr'Tgﬂ of the polynomialP(&1,...,&m) such thatly 4 --- +1m < n
has a zero contribution in the definition of the Wick polynahiP(é&y,...,&m): .

Proof of Corollary 2.3 Let the degree of the polynomiBlben. Then

P(Ela o Em) - Z le,... JmHll(El) e HJm(Em) S %n—l(fla ceey Em)» (23)

sinceP(&1,...,Xm) — 3 Cj;.....imHj1 (é1) - - - Hj, (ém) is @ polynomial whose degree is
m

less tham. Letn = E'll--- Im 51 <n—1.Then
i=1

m
ENHj, (&1) -+ Hip(&m) = |‘|E&“H;i<a> =0,
i=
sincel; < j;i for at least one indek Therefore

Ef] zcj17~-~=ijjl(El)"'Hjm(fm) =0. (2-4)
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Since every element af#Zp_1(é1,...,&ém) can be written as the sum of such
elementsn, relation (2.4) holds for alh € 5#2,_1(é1,...,ém). Relations (2.3)
and (2.4) imply Corollary 2.3. a0

The following statement is a simple consequence of the puswviesults.

Corollary 2.4. Letéy, &>, ... be an orthonormal basis i##7. Then the random vari-
ables H, (é1)---Hj, (&), k=1,2,..., j1+---+ jk =n, form a complete orthogonal
basis in4,.

Proof of Corollary 2.4t follows from Corollary 2.3 that
Hiy (81) - Hj (&) = &t g e s forallk=1,2,...

if j1+---+ jx = n. These random variables are orthogonal, and all Wick palyno
mials :P(&1,...,&m): of degreen of the random variable&;, &,,... can be repre-
sented as the linear combination of such terms. Since thése pplynomials are
dense in/4, this implies Corollary 2.4. O

The arguments of this chapter exploited heavily some ptgseof Gaussian
random variables. Namely, they exploited that the lineanlzioations of Gaussian
random variables are again Gaussian, and in Gaussian dasgamality implies
independence. This means in particular, that the rotafiarstandard normal vector
leaves its distribution invariant. We finish this chaptethnan observation based on
these facts. This may illuminate the content of formula)®dm another point of
view. We shall not use the results of the subsequent cordides in the rest of this
work.

LetU be a unitary transformation ovef3. It can be extended to a unitary trans-
formation% over 77 in a natural way. Fix an orthonormal basig &2, ... in 77,
and defineZ1 = 1, @/EHEL‘E = (U&,)1--- (U, ). This transformation can
be extended to a linear transformati@n over # in a unique way. The trans-
formation% is norm preserving, since the joint distributions(éf,,¢j,,...) and
(Uéj,,Uéj,,...) coincide. Moreover, itis unitary, sint&€1,U &>, ... is an orthonor-
mal basis in7j. It is not difficult to see that iP(xa, ..., %) is an arbitrary polyno-
mial, andni,nz...,Nm € 54, thenZP(n1,...,Nm) = P(UNa,...,UnNm). This re-
lation means in particular that the transformati@ndoes not depend on the choice
of the basis in7. If the transformations, and %% correspond to two unitary
transformationd); andU, on /73, then the transformatiof?; %% corresponds to
U1U,. The subspaces/Z,, and therefore the subspacés remain invariant under
the transformation% .

The shift transformations of a stationary Gaussian field, their extensions to
2 are the most interesting examples for such unitary trangftionsU and% . In
the terminology of group representations the above fastsheaformulated in the
following way: The mappind) — % is a group representation 0f(.7#1) over .77,
whereU (71) denotes the group of unitary transformations o%r. Formula (2.1)
gives a decomposition of7 into orthogonal invariant subspaces of this representa-
tion.






Chapter 3
Random Spectral Measures

Some standard theorems of probability theory state thattheslation function
of a stationary random field can be expressed as the Fouaiesform of a so-
called spectral measure. In this chapter we construct sorandeasure with the
help of these results, and express the random field itseli@&ourier transform
of this random measure in some sense. We restrict ourse\tas Gaussian case,
although most of the results in this chapter are valid foiteaty stationary random
field with finite second moment if independence is replacedrbiyogonality. In the
next chapter we define the multiple Wieneé-htegrals with respect to this random
measure. In the definition of multiple stochastic integtiaésGaussian property will
be heavily exploited. First we recall two results about thectral representation of
the covariance function.

Given a stationary Gaussian fied, n € Z,, or X(¢), ¢ € ., we shall assume
throughout the paper th&X, = 0, EX? = 1 in the discrete an&X(¢) = 0 in the
generalized field case.

Theorem 3A. (Bochner.)Let X, n € Z,, be a discrete (Gaussian) stationary ran-
dom field. There exists a unique probability measure G-em, 1)V such that the
correlation function (n) = EXoXp = EXcXin, N € Zy, Kk € Z,,, can be written in
the form

f(n) = /ei(”vx)G(dx), 3.1)
where(,-) denotes scalar product. Further(@) = G(—A) for all A € [—m, T)".
We can identify{— T, 1)V with the torusR¥ /2nZ,. Thus e.g—(—1,...,—1) =

(—m,...,—m).

Theorem 3B. (Bochner-Schwartz.} et X(¢), ¢ € .7, be a generalized Gaussian
stationary random field ove#” = .#,. There exists a unique-finite measure G on
RY such that

EX(¢)X(¢) = (/.(ﬁ(X)LI_I(X)G(dX) forall ¢, Y € .7, (3.2)

15
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where” denotes Fourier transform anccomplex conjugate. The measure G has the
properties GA) = G(—A) for all A € $Y, and

/(1+ IX|)"G(dx) < e with an appropriate r> 0. (3.3)

Remark.The above formulated results are actually not the BochnerBarthner—
Schwartz theorem in their original form, they are their @nsences. In an Adjust-
ment to Chapter 3 | formulate the classical form of theserémas, and explain how
the above results follow from them.

The measur& appearing in Theorems 3A and 3B is called the spectral measur
of the stationary field. A measu® with the same properties as the measGre
in Theorem 3A or 3B will also be called a spectral measures T&iminology is
justified, since there exists a stationary random field withctral measuré for all
suchG.

Let us now consider a stationary Gaussian random field @sar general-
ized one) with spectral measu@ We shall denote the spate([—m, )Y, %#Y,G)
or Lo(RY,#",G) simply by LZ. Let 7 denote the real Hilbert space defined by
means of the stationary random field, as it was done in Ch@pteet.7Z;° denote
its complexification, i.e. the elements.¢f° are of the formnX +iY, X,Y € .7, and
the scalar product is defined &% +iY1, X2 +iY2) = EXiXo + EYiY2 +i(EY1 X —
EX1Y,). We are going to construct a unitary transformatidnrom Lé to 7%, We
shall define the random spectral measure via this transfamma

Let ¢ denote the Schwartz space of rapidly decreasing, smoatfplea val-
ued functions with the usual topology of the Schwartz spgidee elements of”°
are of the formp +iy, ¢, Y € .7.) We make the following observation. The finite
linear combinations c,e(™ are dense ihZ in the discrete field, and the functions
¢ € ¢ are dense irIL(Z3 in the generalized field case. In the discrete field case this
follows from the Weierstrass approximation theorem, whstdtes that all contin-
uous functions orjl—m, )V can be approximated arbitrary well in the supremum
norm by trigonometrical polynomials. In the generalizeddfiease let us first ob-
serve that the continuous functions with compact suppertianse in_é. We claim
that also the functions of the spageare dense ihZ, whereZ denotes the class of
(complex valued) infinitely many times differentiable ftioos with compact sup-
port. Indeed, ifp € 2 is real valuedg(x) > 0 for all x e R, [¢(x)dx= 1, we
defineg(x) =t"¢ (¥), andf is a continuous function with compact support, then
fx ¢y — f uniformly ast — . Here« denotes convolution. On the other hand,
fx¢ € 2 forallt >0. HenceZ C .#°is dense irL3.

Finally we recall the following result from the theory of ttibutions. The map-
ping ¢ — ¢ is an invertible, bicontinuous transformation fram® into .. In
particular, the set of functiong, ¢ € .7, is also dense iné.

Now we define the mapping

(3 ed™)) = 3 coXe (34)
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in the discrete field case, where the sum is finite, and

(o +ig) =X(9)+iX(y), ¢, e (3.5
in the generalized field case.
Obviously,
Hchei(”“) 22 = ZchEm/ei(”*m)*XG(dx)
and

1941012, = 1809500 ~i6 0000 +IPOOF) + PROFIG(c
— EX(9)2~EX($)X(W) +EX($)X(9) +EX(W)?
= E(X() +iX(9)])%

This means that the mappihdrom a linear subspace OE to 771° is norm preserv-
ing. Besides, the subspace whéneas defined is dense lré since the space of
continuous functions is densel’u@ if G is a finite measure on the tor& /2nZ,,
and the space of continuous functions with a compact sugpdense i.% (R) if
the measurés satisfies relation (3.3). Hence the mappingan be uniquely ex-
tended to a norm preserving transformation frof to 7. Since the random
variablesX, or X(¢) are obtained as the image of some element ficgnun-
der this transformation, is a unitary transformation frorhé to °. A unitary
transformation preserves not only the norm, but also théasgaoduct. Hence
[ F(X)9(x)G(dx) =EI(f)I(g) forall f,ge LZ.

Now we define the random spectral meastggA) for all A € %Y such that
G(A) < o by the formula

Zg(A) = (Xn),

wherexa denotes the indicator function of the getlt is clear that

(i) The random variableZg(A) are complex valued, jointly Gaussian random
variables. (The random variables RgA) and ImZg(A) with possibly different
setsA are jointly Gaussian.)

(i) EZs(A)=0,

(i) EZs(A)Zs(B) =G(ANB),

n n
(iv) 3 Zo(Aj) =Zc | U Aj | if Ag,..., Ay are disjoint sets.
=1 j=1

Also the following relation holds.
V) Zo(A)=Zo(-A).
This follows from the relation
() I(f)=I1(f_)forall f € L, wheref_(x) = f(—x).
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Relation (V) can be simply checked if is a finite trigonometrical polynomial
in the discrete field case, or ff = @, ¢ € ., in the generalized field case. (In
the casef = @, ¢ € .7°, the following argument works. Put(x) = ¢1(x) +i@2(x)
with ¢1,¢2 € 7. Thenl (f) = X(¢1) +iX(¢2), and f_(X) = §1(—x) —id2(—x) =
P19 +i(—F2(x), hencel (f) =X($1)+iX (—¢2) = X(¢1) —iX(¢2) =I(F).) Then
a simple limiting procedure implies vin the general case. Relation (iii) follows
from the identityEZg(A)Zg(B) = El(xa)l (X8) = [ Xa(X) Xx8(X)G(dXx) = G(ANB).
The remaining properties @g(-) are simple consequences of the definition.

RemarkProperty (iv) could have been omitted from the definitionafdom spec-
tral measures, since it follows from property (iii). To shtiws it is enough to check
that if A, ..., Ay are disjoint sets, and property (iii) holds, then

(oo (30 (<[4

Now we introduce the following

Definition of Random Spectral Measure.Let G be a spectral measure. A set of
random variables &(A), G(A) < «, satisfying (i)—(v) is called a (Gaussian) random
spectral measure corresponding to the spectral measure G.

Given a Gaussian random spectral mea&igreorresponding to a spectral mea-
sure G we define the (one-fold) stochastic integrfaf (x)Zg(dx) for an appro-
priate class of functiond. Let us first consider simple functions of the form
f(X) = S Cixa (X), where the sum is finite, an@(A;) < o for all indicesi. In this
case we define

/f(x)ZG(dx) = 3 6 Za(A).
Then we have
2

e|[ 109200 =3 oEiGAnA) = [IT0Pe(d. (36

Since the simple functions are densel_@, relation (3.6) enables us to define
[ f(X)Zs(dx) for all f € L via L,-continuity. It can be seen that this integral satis-
fies the identity

E [ 1(0Z6(d¥ [ 9x)Za(dx) = [ F(x)gHIG(c¥ (37)

for all pairs of functionsf,g € Lé. Moreover, similar approximation with simple
functions yields that

[ 10Za(d = [ T(=X)2Za(dx) (3.8)
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for a functionf € LZ. Here we exploit the identit¥s(A) = Zg(—A) formulated in
property (v) of the random spectral measge

The last two identities together with the relations (3.19 &h2) imply that if we
define the set of random variabl¥s andX(¢) by means of the formula

Xo= [eM2e(dx, nez, (3.9)

and

X(9)= [#(Za(dx). 9.7, (3.10)

where we integrate with respect to the random spectral measgy) then we get
a Gaussian stationary random discrete and generalizedviighdspectral mea-
sureG, i.e. with correlation function given in formulas (3.1) a(®l2). To check
this statement first we have to show that the random variaflendX(¢) defined
in (3.9) and (3.10) are real valued, or equivalently sayimg itdentitiesX, = X,

and X(¢) = X(¢) hold with probability 1. This follows from relation (3.8) en
the identitiesé(™ = eli(n=%) and ¢(x) = §(—x) for a (real valued) function
¢ € .. Then we can calculate the correlation functida®,Xm = EX.Xm and

EX(¢)X(¢) =EX(¢)X(¢) by means of formula (3.7), (3.9) and (3.10).
We also have

/f(x)ZG(dx) —I(f) forall f el

if we consider the previously defined mappirid) with the stationary random fields
defined in (3.9) and (3.10). Now we formulate the following

Theorem 3.1.For a stationary Gaussian random field (a discrete or genieeal
one) with a spectral measure G there exists a unique Gausaizsiom spectral
measure & corresponding to the spectral measure G on the same prathegjlace
as the Gaussian random field such that relation (3.9) or (Btfddds in the discrete
or generalized field case respectively.

Furthermore

P (Xn, N € Zy) in the discrete field case,
BX(9), ¢ €.7)inthe generalized field case.
(3.11)

(26l G <) = {

If a stationary Gaussian random fiedd, n € Z,, or X(¢), ¢ € ., and a random
spectral measurgg satisfy relation (3.9) or (3.10), then we say that this rando
spectral measure is adapted to this Gaussian random field.

Proof of Theorem 3.1Given a stationary Gaussian random field (discrete or statio
ary one) with a spectral measu®ewe have constructed a random spectral measure
Z corresponding to the spectral measGreMoreover, the random integrals given
in formulas (3.9) or (3.10) define the original stationarpdam field. Since all
random variableZg(A) are measurable with respect to the original random field,
relation (3.9) or (3.10) implies (3.11).
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To prove the uniqueness, it is enough to observe that becétise linearity and
L, continuity of stochastic integrals relation (3.9) or (3.1@iplies that

Za(W) = [ xa(0Za(d) =10tw)

for a Gaussian random spectral measure corresponding sp#wtral measuré
appearing in Theorem 3.1. O

Finally we list some additional properties of Gaussian camd@pectral measures.

(vi) The random variables R&;(A) are independent of the random variables
ImZg(A).

(vii) The random variables of the for@z (AU (—A)) are real valued. If the sets
ALU(=A1),...,AnU(—Ap) are disjoint, then the random variabBs(A;),. . .,
Zg(An) are independent.

(viii)  The relations R&g(—A) = ReZg(A) and ImZg(—A) = —ImZs(A) hold,
and ifAN(—A) =0, then the (Gaussian) random variableZRE\) and ImZg (A)
are independent with expectation zero and varia®@e) /2.

These properties easily follow from (i)—(v). Sin&g(-) are complex valued
Gaussian random variables, to prove the above formulatddpandence it is
enough to show that the real and imaginary parts are unetecel We show, as
an example, the proof of (vi).

EReZo(A)IMZs(B) = 7 E(Zo(A) +Zo(A)) (Zs(B) ~ Zo(B))
_ %g(zew +Z6(~A))(Zo(~B) — Zo(B))
_ %G(Aﬂ (-B))— %G(Aﬁ B)
+76((-A)N(-B)) ~ zG(-A)NB) =0

for all pairs of setdA andB such thaiG(A) < «, G(B) < =, sinceG(D) = G(—D)
forall D € 88Y. The fact thaZg(AU (—A)) is real valued random variable, and the
relations R&g(—A) = ReZg(A), ImZg(—A) = —ImZg(A) under the conditions
of (viii) follow directly from (v). The remaining statemenbof (vii) and (viii) can be
proved similarly to (vi) only the calculations are simpleithis case.

The properties of the random spectral meagigrsted above imply in particular
that the spectral measu@@ determines the joint distribution of the corresponding
random variableZs(B), B € #".
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3.1 On the Spectral Representation of the Covariance Funain
of Stationary Random Fields

The results formulated under the name of Bochner and BoeBicbivartz theorem
(I'write this, because actually | presented not these timeeiait an important con-
sequence of them) have the following content. Given a fieiten measur& on
the torusR¥ /2nZ, one can define a (Gaussian) discrete stationary field witle-cor
lation function satisfying (3.1) with this measuge For an even measufe on R"
satisfying (3.3) there exists a (Gaussian) generalizewstay field with correlation
function defined in formula (3.2) with this measu®e The Bochner and Bochner—
Schwartz theorems state that the correlation functionlqfGdussian) discrete sta-
tionary fields, respectively of all stationary generalifiettds can be represented in
such a way. Let us explain this in more detail.

First | formulate the following

Proposition 3C.Let G be a finite measure on the torus/RnZ, such that GA) =
G(—A) for all measurable sets A. Then there exists a Gaussianat&sstationary
random field X, n € Z,, with expectation zero such that its correlation function
r(n) = EXX«in, NK € Zy, is given by formula (3.1) with this measure G.

Let G be a measure on“Rsatisfying (3.3) and such that(@) = G(—A) for all
measurable sets A. Then there exists a Gaussian statioragralized random field
X(¢), ¢ € .7, with expectation EXg) = 0 for all ¢ € . such that its covariance
function EX¢)X(y), ¢,y € .7, satisfies formula (3.2) with this measure G.

Moreover, the correlation function(n) or EX(¢)X(y), ¢,y € ., determines
the measure G uniquely.

Proof of Proposition 3CBy Kolmogorov's theorem about the existence of ran-
dom processes with consistent finite dimensional distiébstit is enough to prove
the following statement to show the existence of the Gansdiscrete stationary
field with the demanded properties. For any poin{s...,n, € Z, there exists a
Gaussian random vectQKnl,...,an) with expectation zero and covariance ma-
trix EXn; Xn, = r(nj —n). (Observe that the function(n) is real valuedy(n) =
r(—n), because of the evenness of the spectral meds)relence it is enough to
check that the corresponding matrix is positive definit, ¥. cjcr(nj —ng) >0
ik

for all real vectors(cy,...,Cp). This relation holds, becau’sg cjcr(n —ny) =
ik
[ 13 ci€MX2G(dx) > 0 by formula (3.1).
j

It can be proved similarly that in the generalized field cdserd exists a
Gaussian random field with expectation zero whose covaidanction satis-
fies formula (3.2). (Let us observe that the relat®M) = G(—A) implies that
EX(¢)X(y) is areal number for alp, @ € .7, sinceEX(¢)X(y) = EX(9)X(y)
in this case. In the proof of this identity we exploit tHak) = f(—x) for a real val-
ued functionf.) We also have to show that a random field with such a distdhut
is a generalized field, i.e. it satisfies properties (a) apdjiflen in the definition of
generalized fields.
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It is not difficult to show that if¢, — ¢ in the topology of the space”, then
E[X(9n) — X(9)]2 = [ |$n(x) — $(x)[2G(dx) — 0 asn — «, hence property (b)
holds. (Here we exploit that the transformatign— ¢ is bicontinuous in the
space?.) Property (a) also holds, because, as it is not difficultiteck with the
help of formula (3.2),

E[aiX($1) +a2X(92) — X(¢ (211 +a292))?
= [ |10 + 020 — (aud Faage) )| G =

Itis clear that the Gaussian random field constructed in aughy is stationary.

Finally, as we have seen in our considerations in the mait) tiee correlation
function determines the integrélf (x) G( dx) for all continuous function$ with a
bounded support, hence it also determines the me&sure O

The Bochner and Bochner—Schwartz theorems enable us to thladwhe cor-
relation function of all stationary (Gaussian) random feldiscrete or generalized
one) can be represented in the above way with an approppattral measuré&.
To see this let us formulate these results in their origioaht

To formulate Bochner’s theorem first we introduce the follaywotion.

Definition of Positive Definite Functions.Let f(x) be a (complex valued) func-
tion onZ, (or on R’). We say that ) is a positive definite function if for all
parameters p, complex numbess C.,cp and points x,...,Xp in Zy (or in R”) the
inequality

o°

p
z cickf(xj—x) >0
j=1k=1

holds.

A simple example for positive definite functions is the fuantf(x) = &t
wheret € Z, in the discrete, antle R’ in the continuous case. Bochner’s theorem
provides a complete description of positive definite funrtsi.

Bochner’s Theorem. (Its Original Form.) A complex valued function(X) de-
fined onZ, is positive definite if and only if it can be written in the forfifx) =
[éXG(dx) for all x € Z, with a finite measure G on the torug R1Z,. The
measure G is uniquely determined.

A complex valued function(X) defined on Ris positive definite and continuous
at the origin if and only if it can be written in the form(X) = [ € G(dx) for all
x € R” with a finite measure G on"RThe measure G is uniquely determined.

It is not difficult to see that the covariance functigim) = EXXyn, (EX, = 0),
k,n € Z,, of a stationary (Gaussian) random field is a positive definite func-
tion, smcez cjckr(nj —nk) = E| chXn |? > 0 for any vector(cy,...,cp). Hence

Bochner’s theorem can be applled for it. Besides, the miatin) = r (—n) together
with the uniqueness of the measuw@eappearing in Bochner’s theorem imply that
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the identityG(A) = G(—A) holds for all measurable se& This implies the result
formulated in the main text under the name Bochner’s theorem

The Bochner—Schwartz theorem yields an analogous repetgenof positive
definite generalized functions ier’ as the Fourier transforms of positive general-
ized functions in#”. It also states a similar result about generalized funstiothe
space?’. To formulate it we have to introduce some definitions. Rivsthave to
clarify what a positive generalized function is. We introduhis notion both in the
spaces”’ andZ’, and then we characterize them in a Theorem.

Definition of Positive Generalized FunctionsA continuous linear functional &
' (or F € ') is called a positive generalized function if for all sughe . (or
¢ € 2) test functions for whiclp (x) > Oforallx € RV (F,¢) > 0.

Theorem About the Representation of Positive Generalizednctions. All pos-
itive generalized functions E ./ can be given in the forrtF,¢) = [ ¢ (x)u(dXx),
where i is a polynomially increasing measure off ,R.e. it satisfies the relation
J(1+x/?)~Pu(dx) < « with some p> 0. Similarly, all positive generalized func-
tions in 2’ can be given in the forrtF, ¢) = [ ¢ (x)u(dx) with such a measurg
on R’ which is finite in all bounded regions. The positive geneedi function F
uniquely determines the measuyren both cases.

We also introduce a rather technical notion and formulagsalt about it. Let us
remark that if¢ € ¢ andy € ., then also their produdgty € .. In particular,
0P = |9|? € .7 if ¢ €.7° The analogous result also holds in the spéice

Definition of Multiplicatively Positive Generalized Functions. A generalized
function.Z € .7’ (or F € 2') is multiplicatively positive ifF,¢$) = (F,|¢|>) >0
forall ¢ € 7€ (orin ¢ € 2).

Theorem About the Characterization of Multiplicatively Positive Generalized
Functions. A generalized function & .’ (or F € &) is multiplicatively positive
if and only if it is positive.

Now | introduce the definition of positive definite generatifunctions.

Definition of Positive Definite Generalized FunctionsA generalized functiof €
" (or F € 2') is positive definite if(F,¢ x ¢*) > 0 for all ¢ € .7 (of ¢ € 2),
where¢*(x) = ¢ (—x), and« denotes convolution, i.@.«¢*(x) = [ ¢ (1) ¢ (t — X) dt.

We refer to [16] for an explanation why this definition of pog@ definite gen-
eralized functions is natural. Let us remark thapify € ¢, then¢ x @ € .7C,
and the analogous result holdsdn The original version of the Bochner-Schwartz
theorem has the following form.

Bochner-Schwartz Theorem. (Its Original Form.) Let F be a positive definite
generalized function in the spac&’ (or 2’'). Then it is the Fourier transform of
a polynomially increasing measureon R, i.e. the identityF,¢) = [ § (x) u(dx)
holds for allg € .¢ (or ¢ € 2) with a measureu that satisfies the relatioffi(1+
IX|?)~Pu(dx) < « with an appropriate p> 0. The generalized function F uniquely
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determines the measuge On the other hand, if1 is a polynomially increasing
measure on R then the formulaF, ¢) = [ ¢ (x)u(dx) with ¢ € 7€ (or ¢ € 2)
defines a positive definite generalized function F in the spdt(or 2’).

Remarklt is a remarkable and surprising fact that the class of pesitefinite gen-
eralized functions are represented by the same class ofinesasin the spaces”’
and Z'. (In the representation of positive generalized functithesclass of mea-
suresu considered in the case 6 is much larger, than in the case.6f.) Let us
remark that in the representation of the positive definiteegalized functions i’
the functiond we integrate is not in the clasg, but in the space? consisting of
the Fourier transforms of the functionsin

It is relatively simple to prove the representation of pesitdefinite general-
ized functions given in the Bochner—-Schwartz theorem fer ¢tass.””’. Some
calculation shows that iF is a positive definite generalized function, then its
Fourier transform is a multiplicatively positive genezalil function. Indeed, since
the Fourier transform of the convolutign« Y(x) equals (t)J(t), and the Fourier
transform ofg*(x) = ¢ (—x) equalsg (t), the Fourier transform o « ¢*(x) equals
@(t)d(t). Hence the positive definitiveness property of the germadlfunctionF
and the definition of the Fourier transform of generalizedctions imply that
(F,6¢) = (2m)V(F,¢ + ¢*) > 0 for all ¢ € .7°. Since every function of”° is
the Fourier transfornd of some functiong € .7¢ this implies that® is a mul-
tiplicatively positive and as a consequence a positive igdimed function in.s”.
Such generalized functions have a good representatiortivdthelp of a polynomi-
ally increasing positive measuge Since(F,¢) = (2m)~(F,§) it is not difficult
to prove the Bochner—-Schwartz theorem for the spatevith the help of this fact.
The proof is much harder if the spaé# is considered, but we do not need that
result.

The Bochner—Schwartz theorem in itself is not sufficient ésatibe the cor-
relation function of a generalized random field. We still cheother important
result of Laurent Schwartz which gives useful informatidroat the behaviour of
(Hermitian) bilinear functionals in”® and some additional information about the
behaviour of translation invariant (Hermitian) bilineanttionals in this space. To
formulate these results first we introduce the following rigén.

Definition of Hermitian Bilinear and Translation Invariant Hermitian Bilinear
Functionals in the Space¥°. A function B¢, ¢), ¢, € ., is a Hermitian bi-
linear functional in the space¢ if for all fixed ¢ € .7° B(¢, ) is a continuous
linear functional of the variable in the topology of#¢, and for all fixed¢ € .#°
B(¢, ) is a continuous linear functional of the variabjein the topology of7°.

A Hermitian bilinear functional Bg, ) in .#€ is translation invariant if it does
not change by a simultaneous shift of its variabpeand g, i.e. if B(¢ (x), ¢(X)) =
B(¢(x—h),(x—h)) forallheR".

Definition of Positive Definite Hermitian Bilinear Functionals. We say that a
Hermitian bilinear functional B¢, ) in ¢ is positive definite if By, ¢) > O for
all ¢ € .7°.
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The next result characterizes the Hermitian bilinear aswasiation invariant Her-
mitian bilinear functionals in”°.

Theorem 3D. All Hermitian bilinear functionals Bg, () in . can be given in
the form Bo, ) = (F1,o(X)@(y)), ¢, € ¢, where k is a continuous linear
functional on.”¢ x .#¢, i.e. it is a generalized function i,

A translation invariant Hermitian bilinear functional i’® can be given in the
form Z(¢, @) = (F,¢ «y*), ¢,y € .C, where Fe ., ¢*(x) = P(—x), and *
denotes convolution.

The Hermitian bilinear form Bp, /) determines the generalized functions F
uniquely, and if it is translation invariant, then the samade told about the gen-
eralized function F. Besides, for all functionals € .75, and F € .’ the above
formulas define a Hermitian bilinear functional and a traatsbn invariant Hermi-
tian bilinear functional in.§ respectively.

Let us consider a Gaussian generalized random Xé{f), ¢ € .7, with expec-
tation zero together with its correlation functiB¢, ) = EX¢)X(y), ¢, @ € 7.
More precisely, let us consider the complexificathofy +id2) = X(¢1) +iX(¢2)
of this random field and its correlation functidg, @) = EX(¢)X(W), ¢, @ € C.
This correlation functioB(¢, @) is a translation invariant Hermitian bilinear func-
tional in ., hence it can be written in the for®(¢, ) = (F, ¢ * ¢*) with an
appropriaté= € .. MoreoverB(¢,$) > 0 for all ¢ € .7¢, and this means that the
generalized functiofr € .’ corresponding td(¢, () is positive definite. Hence
the Bochner—Schwartz theorem can be applied for it, aneéltigithat

EX(O)X(W) = [#:96(d) = [ TG forall g,y .5

with a uniquely determined, polynomially increasing meada on RV. Now we
complete the proof of Theorem 3B with the help of these result

Proof of Theorem 3BNe have already proved relations (3.2) and (3.3) with thp hel
of some results about generalized functions. To complet@tbof of Theorem 3B
we still have to show tha is an even measure. In the proof of this statement we
exploit that for a real valued functiop € .# the random variablX(¢) is also real
valued. Hence i, Y € .7, thenEX(¢)X () = EX(¢)X(¢). Besides$(—x) =

@ (x) and@(—x) = P(x) in this case. Hence

J8008006(a = [ 50080 G(c
— [ #0880 = [$00F(0 6 (dx)

forall ¢, € .7, whereG~ (A) = G(—A) for all A€ £". This relation implies that
the measure§ andG~ agree. The proof of Theorem 3B is completed. a0






Chapter 4
Multiple Wiener—It 0 Integrals

In this chapter we define the so-called multiple Wienéritegrals, and we prove
their most important properties with the help di'# formula, whose proof is post-
poned to the next chapter. More precisely, we discuss indégpter a modified
version of the Wiener—dtintegrals with respect to a random spectral measure rather
than with respect to a random measure with independentrnvarts. This modi-
fication makes it necessary to slightly change the definitibthe integral. This
modified Wiener—Ib integral seems to be a more useful tool than the originabone
the Wick polynomials in the study of the problems in this wdskcause it enables
us to describe the action of shift transformations.

Let G be the spectral measure of a stationary Gaussian field ¢tisor gener-
alized one). We define the followirmgal Hilbert spaces7y' and. g, n=1,2,....
We havef, € 7 if and only if fy = fa(X1,...,%), Xj €R", j=1,2,...,n,is a
complex valued function af variables, and

@  fa(=x1,...,—%Xn) = falX1,..., %),
) fnll2 = [1fa(Xe, .-, %) |?G(dxq) ... G(d¥,) < .

Relation (b) also defines the norm mZG” The subspace?y' C %ZG” contains
those functiond, € ¢ which are invariant under permutations of their arguments,
ie.

(© fn(xn(l),...,xn(n))) = fn(Xa,...,%n) for all e My, wherell, denotes the
group of all permutations of the s€t,2,...,n}.

The norm in# is defined in the same way as . Moreover, the scalar
product is also similarly defined, namelyfif g € J7Z', then

(f,9) :/f(xl,...,xn)g(xl,..‘,xn)G(dxl)...G(dxn)

:/f(xl,...,xn)g(—xl,...,—xn)G(dxl)...G(dxn).

27
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Because of the symmeti@(A) = G(—A) of the spectral measurd,g) = (f,qg),
i.e. the scalar produdtf,g) is a real number for alf, g € ZZ. This means that
A is areal Hilbert space. We also defing? = 72 as the space of real constants
with the norm||c|| = |c|. We remark that# is actually then-fold direct product
of jfé while 7' is then-fold symmetrical direct product 0%%1 Condition (a)
means heuristically th&f, is the Fourier transform of a real valued function.
Finally we define the so-called Fock space E4p whose elements are se-
quences of function$ = (fo, f1,...), fp € S foralln=0,1,2,..., such that

fes]

1
||f||2: E ﬁ||fn||2<°°-
n=0""

Given a functionf € %’76” we define Synf as

1
Symf (Xq,..., X)) = — f (X105« » Xyzn) ) -
o n;n (1) -+ X(n)
Clearly, Symf € 22, and
[Symf|[ </ f]. (4.1)

Let Zg be a Gaussian random spectral measure corresponding tpebtrad
measures on a probability spaceQ, <7, P). We shall define the-fold Wiener—I1H
integrals

1 —
I6(fn) = E./ Fa(X, . Xn)Zo (A1) .. Z6(d%,)  for o € A

and .
Ic(f) = zOIG(fn) for f = (fo, f1,...) € ExpsG.
n—

We shall see thalig(f,) = Ig(Symfy) for all f, € 2. Therefore, it would have
been sufficient to define the Wienei-lintegral only for functions in/Zg'. Nev-
ertheless, some arguments become simpler if we workh In the definition of
Wiener-Io integrals first we restrict ourselves to the case when tbetsgd measure
is non-atomic, i.eG({x}) = 0 for all x € R. This condition is satisfied in all inter-
esting cases. However, we shall later show how one can get tiils restriction.

First we introduce the notion of regular systems for soméectbns of subsets
of RY, define a subclas{' C /7' of simple functions with their help, and define
the Wiener—Ib integrals for the functions of this subclass.

Definition of Regular Systems and the Class of Simple Functits. Let
2 ={4j, j=+1,£2,...,£N}

be a finite collection of bounded, measurable sets ‘inififlexed by the integers
+1,...,=N. We say thatZ is a regular system if\j = —A_j, andAjN A = O if
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j#Iforall j,I =+1,+£2...,+£N. A function fe ' is adapted to this system
2 if f(Xq,...,%) is constant on the sei§j, x Aj, x --- x Aj,, ji ==£1,...,£N,
I =1,2,...,n,itvanishes outside these sets and also on those setsfofina;, x
Aj, x --- x Aj,, for which j = £, for some £ 1".

A function fe % is in the class/g' of simple functions, and a (symmetric)
function fe 7 is in the class%%” of simple symmetric functions if it is adapted
to some regular systetd = {4, j ==£1,...,£N}.

Definition of Wiener—It0 Integral of Simple Functions.Let a simple function €

¢ be adapted to some regular systefis= {Aj, j+1,...,£N}. Its Wiener—Id
integral with respect to the random spectral measugd<defined as

/f(xl,...,xn)zG(dxl)...zG(dm (4.2)
=nllg(f) = Z FXjps -2 XG0)Z6(4jy) - Z(4j0),
jil=+T.. =N
1=1,2,....n
where %, € 4j,, i==%1,...,£N,I=1,....n.

We remark that although the regular systemto which f is adapted, is not
uniquely determined (the elements @f can be divided to smaller sets), the in-
tegral defined in (4.2) is meaningful, i.e. it does not dependhe choice of%.
This can be seen by observing that a refinement of a regulégrsys to which
the functionf is adapted yields the same value for the sum defimirig(f) in
formula (4.2) as the original one. This follows from the adhity of the random
spectral measurég formulated in its property (iv), since this implies that bac
term f(X;;,...,Xj,)Zc(4j,) - Zs(4j,) in the sum at the right-hand side of for-
mula (4.2) corresponding to the original regular systemaégjthe sum of all such
termsf (x;,,... ,xjn)ZG(AJf/l) - -ZG(AJ%) in the sum corresponding to the refined par-
tition forwhichAJf,1 XX Ay CAj X X A

By property (vii) of the random spectral measures all présiuc

Z(4yj,) - Zs(4j,)

with non-zero coefficient in (4.2) are products of indeperidandom variables.
We had this property in mind when requiring the conditiort the functionf van-
ishes on a produdj, x --- x 4j, if jj = £j for somel # I’. This condition is
interpreted in the literature as discarding the hypergagne= x, andx = —x,
I,I'=1,2,...,n,1 #1’, from the domain of integration. (Let us observe that in this
case, — unlike to the definition of the original Wienet-Ihtegrals discussed in
Chapter 7, — we omitted also the hyperplames- —x and not only the hyper-
planesqy = x. | #1’, from the domain of integration.) Property (a) of the fuoog

in &' and property (v) of the random spectral measures implylgdt) = Ig(f),

i.e.lg(f) is areal valued random variable for dllc /7. The relation
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Elg(f)=0, forfe 0 n=12,... (4.3)

also holds. LetZ = /#0NAR. If f € A2, then Syt € 72, and
lc(f) =lg(Symf). (4.4)

Relation (4.4) follows immediately from the observatioatths(4j,) - - - Zg(4;,) =
Z6(Anjy)) - Zs(Apyjy) for all e I1,. We also claim that

1 a
EIG(f)ZSEHfHZ for f e .22, (4.5)
and 1
EIG(f)Z:HHfHZ for f e 72 (4.6)

More generally, we claim that

Elg(f)lg(h):%(f,g) :/f(xl,...,xn)g(xb...,xn)G(dxl)...G(dxn)
for f,ge 2. (4.7)

Because of (4.1) and (4.4) it is enough to check (4.7).
Let 2 be a regular system of setsR¥, ji1,..., jn andkg,...,k, be indices such
thatj| 7& :l:j|/, ki ;é :l:kll if | 7é I”. Then

EZs(4),) - Z6(4j0)Z6(Ak) -+ Z6(Ak,)
:{G(Ajl)'“G(Ajn) it {is,- o Jn} = {ke,. . Kk,

0 otherwise.

To see the last relation one has to observe that the produtheoteft-hand
side can be written as a product of independent random Vesi#lecause of prop-
erty (vii) of the random spectral measures{Ji,..., jn} # {ki,...,kn}, then there
is an index! such that eithefj; # +k;, for all 1 < 1" < n, or there exists an index
I’, 1 <1" <'n, such thatj; = —kp. In the first cas&g(4;,) is independent of the
remaining coordinates of the vecttfg(4,),...,Zc(4j,),Zc(Ak,); - - -, Zs(Dky)),
andEZg(4;,) = 0. Hence the expectation of the investigated product eqeats,
as we claimed. Ifj = —k;; with some index’, then a different argument is needed,
sinceZg(4j,) andZg(—A4;,) are not independent. In this case we can state that since
jp# i if p#1, andky # i if q# 1, the vecton(Zg(4),), Ze(—A4j,)) is indepen-
dent of the remaining coordinates of the above random veCtoithe other hand,
the productZg(4;,)Zs(—A4j,) has zero expectation, sin€Zg(4A;,)Zc(—4j,) =
G(4j, N (—4j,)) = 0 by property (iii) of the random spectral measures and tlze re
tion Aj N (—A4j,) = 0. Hence the expectation of the considered product eqeats z
alsointhis case. If j1,..., jn} = {ki,...,kn}, then
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EZG(Ail)"'ZG(Ajn)ZG(Akl) Zg(Dk,) = I_!EZG AJ| ZG Ah r!G AJI

Therefore for two functions,g € j?é‘ we may assume that they are adapted to
the same regular system = {4, j = £+1,...,£N}, and

Ela(fle(@) ~Ele(1ia(@) - ( 5 ) S S FXjee X000 %)
EZs(4j,) - Zc(4j,)Zc (L, ) - - Za(Ak,)
(& ) S Xy ) 30K X )G Ay ) -+ Gl

= = [ 0 X)) G(d) - G d) = - (1,0).

We claim that Wiener—t integrals of different order are uncorrelated. More ex-
plicitly, take two functionsf jf” andf’ € %” such than # n'. Then we have

Ela(la(f')=0 if fe D, t'e A, andn#n. (4.8)
To see this relation observe that a regular systenan be chosen is such a way that

both f andf’ are adapted to it. Then a similar, but simpler argument apréagous
one shows that

EZ(4),) - Zs(4j,)Zc (D) - Za(Ak,) =0

for all sets of indiceq j1,..., jn} and{ky, ..., ky} if n=n’, hence the sum express-
ing Elg(f)lg(f’) in this case equals zero.

We extend the definition of Wienerélintegrals to a more general class of kernel
functions with the help of the following Lemma 4.1. This isieple result, but
unfortunately it contains several small technical detaifsd this makes its reading
unpleasant.

Lemma 4.1.The class of simple functiomg’g‘ is dense in the (real) Hilbert space

J“?G", and the class of symmetric simple funct%1 is dense in the (real) Hilbert
spaces?.

Proof of Lemma 4.1t is enough to show tha#' is dense in the Hilbert spack,
since the second statement of the lemma follows from it byadsird symmetriza-
tion procedure.

First we reduce the result of Lemma 4.1 t&tmtement Aand then to &tate-
ment B Finally we proveStatement Bin Statement Ave claim that the indicator
function xa of a bounded seA € 932" such thatA = —A can be well approximated
by a function of the forng = xg € 7', wherexg is the indicator function of an ap-
propriate seB. Actually we formulate this statement in a more complicéftath,
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because only in such a way can we reduce the statement aleogodd approx-
imability of a general, possibly complex valued functibre .7 by a function in

g € J¢ to Statement A

Statement ALet A € 2" be a bounded, symmetric set, i.e. fet= —A. Then for
anye > 0 there is a functiog € /7 such thag = xg with some seB € #", i.e.
gis the indicator function of a s&such that the inequalityg— xa|| < € holds with
the norm of the spacg#’. (Herexa denotes the indicator function of the getand
we havexa € 7¢.)

If xa € ¢, andAq is such a set for which the sAtcan be written in the form
A=A1U(—A1), and the setdy and—A; have a positive distance from each other,
i.e. p(A1,—A1) = XeAlir;/L Alp(x,y) > 0, with somed > 0, wherep denotes the

Euclidean distance iR", trlen a good approximation gk can be given with such

a functiong = xg,(_p) € #¢ for which the sets3 and —B are separated from
each other, and the sBtis close toA;. More explicitly, for alle > 0 trlere is a
setB € " such thatB C A‘f/z ={x: p(x,A1) < %}, 9 = Xsu(-B) € s, and
G"(A1AB) < §. HereAAB denotes the symmetric difference of the skiandB,

andG" is then-fold direct product of the spectral meas@®n the spac&™. (The

above properties of the sBimply that the functiorg = xg,(_g) € /¢ satisfies the
relation||g— xall < €.)

To justify the reduction of Lemma 4.1 ®tatement Aet us observe that if two
functionsfy € 2% andf, € ' can be arbitrarily well approximated by functions

from g in the norm of this space, then the same relation holds forliaesar
combinationc; f1 + ¢, o with real cgefficients:l andcy. (If the functionsf; are ap-
proximated by some functior € ¢, i = 1,2, then we may assume, by applying
some refinement of the partitions if it is necessary, thatapgroximating func-
tionsg; andg; are adapted to the same regular partition.) Hence the pboeftahe

arbitrarily good approximability of a functiof € J7Z' by functionsg € J#Z' can
be reduced to the proof about the arbitrarily good approkitita of its real part
Ref € % and its imaginary part Irh € 7. Moreover, since the real part and
imaginary part of the functiori can be arbitrarily well approximated by such real
or imaginary valued functions from the spag&’' which take only finitely many
values, the desired approximation result can be reducetetadse wheri is the
indicator function of a sef € 4" such thatA = —A (if f is real valued), or it
takes three values, the valuen a setd; ¢ ", the value—i on the set-A;, and

it equals zero o™ \ (AQU (—A1)) (if f is purely imaginary valued). Besides, the
inequalitiesG"(A) < « andG" (A1) < « hold. We may even assume thaandA;
are bounded sets, becaG¥A) = KIian G"(AN[—K,K]"), and the same argument

applies forA;.

Statement Ammediately implies the desired approximation result efitst case
when f is the indicator function of a se&% such thatA = —A. In the second case,
when such a functiofi is considered that takes the valugisand zero, observe that
the setsA; = {x: f(x) =i} and—A; = {x: f(X) = —i} are disjoint. Moreover,
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we may assume that they have positive distance from each beeause there are
such compact setéy C A;,N=1,2,..., for which NIim G"(A\ (KnU(—Kn)) =0,

and the two disjoint compact sel§; and —Ky have positive distance. This en-
ables us to restrict our attention to the approximation ehdunctionsf for which
Ar={x: f(x) =i} =Ky, —A1 = {x: f(x) = —i} = —Ky with one of the above
defined set&y with a sufficiently large indeX, and the functionf disappears on
the complement of the sét; U (—A;). To get a good approximation in this case,
take A; = Ky and apply the second part Statement Aor the indicator func-

tion Xa = Xkyu(—ky) With the choiceA; = Ky. We get that there exists a function

g = Xsu(-B) € H¢ such thatB C Af/z with a numberd > 0 for which the rela-

tion p(Kn, —Kn) > 0 holds, andG"(A1AB) < §. Then we define with the help of

the above seB the functiong € j?g‘ asg(x) =iif xeB, g(x) = —i if xe —B
and g(x) = 0 otherwise. The definition of the functiag(-) is meaningful, since
BN (—B) =0, and it yields a sufficiently good approximation of thedtian f(-).

In the next step we reduce the proof3tatement Ao the proof of a result called
Statement BIn this step we show that to pro®&tatement At is enough to prove the
good approximability of some very special (and relativetyyse) indicator func-

tions xg € ¢ by a functiong € 7.
Statement BLet B = D1 x --- x Dy be the direct product of bounded s&tse %"
such thatD; N (—Dj) =0 for all 1 < j < n. Then for alle > 0 there is a seff C
BU(-B), F € " such thaxr € ¢, and|| Xgu(—s) — XF | < &, with the norm of
the space.

To deduceStatement Arom Statement Bet us first remark that we may reduce

our attention to such sefsin Statement Aor which all coordinates of the points in
the setA are separated from the origin. More explicitly, we may asstime existence

of a numbem > 0 with the propertyANK(n) = 0, whereK(n) = LnJ Kj(n) with
Ki(n)={(xt,...,xn): x€RY,1=1,...,n, p(x;,0) <n}.Tosee olu_rlrightto make
such a reduction observe that the relat@®d0}) = 0 implies thatnirgG”(K(n)) =

0, hencenircr)\G”(A\ K(n)) = G"(A). At this point we exploited a weakened form of
the non-atomic property of the spectral meastreamely the relatio®({0}) = 0.

First we formulate a result that we prove somewhat laterraddce the proof of
Statement Ao that of Statement Bvith its help. We claim that for all numbegs> 0,
0 > 0and bounded sefsc A" such thalh = —A, andAUK () = 0 there is a finite
sequence of bounded s&se 2", j = £1,...,£N, with the following properties.
The setsB; are disjoint,B_j = —Bj, j = +1,...,£N, each seB; can be written
in the formB; = D\ x ... x DY with D{) € %", andD| " n (~D{)) = 0 for all
1< j<Nand 1<k <n, the diameted(B;) = sup{p(x,y): X,y € Bj} of the sets

N

Bj has the bound(B;) < forall 1< j <N, and finally the seB = J (BjuB_j)
j=1

satisfies the relatio®"(AAB) < €.
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Indeed, since we can choase- 0 arbitrarily small, the above result together with
the application ofStatement Bor all functionsXBjU(_Bj), 1< j <N, supplies an

N
arbitrarily good approximation of the functigq by a function of the formy x, €
=1
a — N a
& in the norm of the spacez{. Moreover, the random variabl§ xg, € g
j=1

N
agrees with the indicator function of the dgtF;, since the setB;, j =+1,...,£N,
j=1
are disjoint, andrj C BjUB_;. J
If the setA can be written in the formA = A; U (—As) such thap (A, —A1) > 9,
then we can make the same construction with the only moddicahat this time
we demand that the seB satisfy the relatiord(B;) < & with somed < $ for all
1 < j < N. We may assume th&n (B; UB_;) # 0 for all indicesj, since we can
omit those set8; UB_j which do not have this property. SindéB;) < $, a setB;
cannot intersect botA; and —A;. By an appropriate indexation of the s&swe

N
haveB; c AY?andB_j C (—A7)%/2forall 1< j <N. Thenthe seB= | (B;NF})
=1

and the functiorg = xg (g, satisfy the second part Statement A

To find a sequencBj, j = £1,...,%N, for a setA such thatA = —A, andAU
K(n) = 0 with the properties needed in the above argument obskatettere is
a sequence of finitely many bounded sBsof the formB; = D\ x ... x DY,
Dl“) € #Y,1< ] <Nwith someN < «, whose uniorB = | J B; satisfies the relation
G"(AAB) < 5. Because of the symmetry propedy= —A of the setA we may
assume that these sd@g have such an indexation with both positive and negative
integers for whiclBj = —B_j. We may also demand thB{ N A # 0 for all setsB;.

Besides, we may assume, by dividing the m‘fg appearing in the definition of the
setsB; into smaller sets if this is needed that their diamelt(@l“)) < max}, %).

This implies because of the relatiémK(n) = 0 thatd”) 1 (—D) = 0 for all |
and 1<| < n. The above constructed s&smay be non-disjoint, but with the help
of their appropriate further splitting and a proper indexabf the sets obtained in
such a way we get such a partition of the Betvhich satisfies all conditions we
demanded. For the sake of completeness we present a pesfitioe seB with the
properties we need.

Let us first take for all K | < n the following partition ofR with the help of

the setle(j), 1< j < N. For a fixed numbek this partition consists of all se@')

of the formD}" = N Flrjm, where the indices are sequences(1),...,r(N))
1<j<N

of lengthN withr(j) =1,20r3,1< j <N, andFl(jl) = Dl“), Flsz) = —Dlm, FI(]-3) =

R\ (Dl(” U (—D,(”)). ThenB can be represented as the union of those sets of the
form DY x -+ x D" which are contained iB.
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Proof of Statement Blo proveStatement Birst we show that for alk > 0 there is a
regular systen¥ = {4, | = +1,...,+N} such that all set®j and—Dj, 1 < j <n,
appearing in the formulation &tatement Ban be expressed as the union of some
elements); of 2, andG(4)) < e for all 4, € 2.

In a first step we prove a weakened version of this statememshbw that there
is a regular systeny = {A/,| = +1,...,+N’} such that all set®; and—D; can
be expressed as the union of some #¢tsf . But we have no control on the mea-
sureG(4/) of the elements of this regular systezn To get such a regular system
we define the setd’ (&, 1 < |s| < n) = DF* N (=D1)&1N---NDE N (—Dy)én for
all vectors(gs, 1 < |s| < n) such thates = +1 for all 1 < |s| < n, and the vector
(€, 1 < |s| < n) contains at least one coordinatd, andD! =D, D~ =R\ D
for all setsD € Y. Then taking an appropriate reindexation of the gg{gs, 1 <
|s| < n) we get a regular syster® with the desired properties. (In this construc-
tion the seted’(&s, 1 < |s| < n) are disjoint, and during their reindexation we drop
those of them which equal the empty set.) To see fhatith a good indexation
is a regular system observe that for a A¢t= A’(&, 1 < |s| < n) € Z we have
—A =A(e_5,1< |5 <n)e P, andA/ N (-4]) c Djn(—Dj) = 0 with some
index 1< j < n. (We had to exclude the possibilityy = —A).) B

Next we show that by appropriately refining the above regsjatem? we can
get such a regular system = {4, | = +1,...,+N} which satisfies the additional
propertyG(4)) < € for all A) € 2. To show this let us observe that there is a finite

n —
partition{Ey,...,E} of | (Dju(—Dj)) suchthaG(E;) <eforall1<j<lI.In-
=1

n
deed, the closure @ = |J (D;U(—Dj)) can be covered by open sétsC R’ such
j=1

thatG(H;) < ¢ for all setsH; because of the non-atomic property of the mea&yre
and by the Heyne—Borel theorem this covering can be chosién fikith the help of

n
these setsl; we can get a partitiofiE, ... ,E } of |J (D;U(—Dj)) with the desired
=1

properties.

Then we can make the following construction with the helphef above setg;
and4|. Take a pair of element®\/,A” ) = (A/,—4/), of 2, and split up the se/
with the help of the setE; to the union of finitely many disjoint sets of the form
A=A/ NEj. ThenG(4, ;) < ¢ for all sets j, and we can write the sét | as the
union of the disjoint sets-4; ;. By applying this procedure for all paifgy/,A’ )
and by reindexing the sef§ ; obtained by this procedure in an appropriate way we
get a regular syster® with the desired properties.

To proveProperty Blet us writeBU (—B) as the union of products of sets of the
form 4y x .- x 4, with sets4y; € 7, 1 < j < n. Here such a regular system
is considered which satisfies the properties demanded atahteof proof ofState-
ment B Let us discard those products for whighk= =l for some paifj, j'), j # j’.

We define the st about which we claim that it satisfies Property B as the unfon o
the remaining setd, x --- x A,. Thenxr € J#Z. Hence to prove thaBtatement B
holds with this sefF if € > 0 is chosen sufficiently small it is enough to show that
the sum of the term&(4,) --- G(4y,,) for whichl; = £l with somej # | is less
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thann?eM"~1, whereM = maxG(D; U (—Dj)) = 2maxG(Dj). To see this observe
that for a fixed pair(j, j’), j # j’, the sum of all product§&(4,)---G(4,) such
thatlj = | can be bounded bgM"~?, and the same estimate holds if summation
is taken for products with the property= —I;,. Indeed, each term of this sum can

be bounded bgG"? < M A|p> , and the events who&&"~! measure is con-
1<p<n, p#]

sidered in the investigated sum are disjoint. Besides:, theon is in the product set

(DpUD_p), whose measure is bounded I 1. Lemma 4.1 is proved.
1<p<n, p#j
0

As the transformatiotg(f) is a contraction from%?en into Lo(Q,«7,P), it can

uniquely be extended to the closure.#f?, i.e. to. 7. (Here(Q,.</,P) denotes
the probability space where Lhe random spectral mea&gir¢ is defined.) At this
point we exploit that iff € g, N =1,2,..., is a convergent sequence in the
spacesg, then the sequence of random variablgisfy ) is convergent in the space
L2(Q,«7,P), since itis a Cauchy sequence. With the help of this fact aamdrha 4.1
we can introduce the definition of Wiener-integrals in the general case when the
integral of a functionf € J7¢' is taken.

Definition of Wiener—It 6 Integrals. Given a function f j@ with a spectral mea-

sure G choose a sequence of simple functiqns #7%, N =1,2,..., which con-
verges to the function f in the spacé€?’. Such a sequence exists by Lemma 4.1.
The random variabless|( fy) converge to a random variable in the4norm of the
probability space where these random variables are defiaed,the limit does not
depend on the choice of the sequengednverging to f. This enables us to define
the n-fold Wiener-i integral with kernel function f as

/f(xl,...,xn)ZG(dxl)...ZG(dxn) = nllg(f) = lim nllg(fy),

where f € ]«?Gn N=12,...,is a sequence of simple functions converging to the
function f in the space7{.

The expressioihg(f) is a real valued random variable for dlie j_ézn, and rela-
tions (4.3), (4.4), (4.5), (4.6), (4.7) and (4.8) remairidédr f, f' € 2% or f € 7

instead off, f' € g or f € %’g‘ Relations (4.6), and (4.8) imply that the trans-
formationlg: Expi#s — Lo(Q,<7,P) is an isometry. We shall show that also the
following result holds.

Theorem 4.2.Let a stationary Gaussian random field be given (discreteen-g
eralized one), and letgZ denote the random spectral measure adapted to it. If we
integrate with respect to thisz then the transformationsl: Exp.#g — 7, where

2 denotes the Hilbert space of the square integrable randoriables measur-
able with respect to the-algebra generated by the random variables of the random
spectral measured is unitary. The transformatiotn!)l/zl(;: HE — A is also
unitary.
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In the proof of Theorem 4.2 we need an identity whose proobg&poned to the
next chapter.

Theorem 4.3. (I0's Formula.) Let ¢1,...,¢m, @ € %”Gl 1<j<m, be an
orthonormal system ing_ Let some positive integers,j.., jm be given, and
let j1+---+ jm = N. Define for all i=1,...,N the function gas g = ¢s for
i+ Fijs1<i<ji+--+]js, 1 <s<m. (In particular, g = ¢1 for 0 <i < jj.)

Then
Hi, (/¢1(X)Ze(dx)> ~Hj, (/ ¢m(x)ZG(dx))

— [ 0100+ o) Zo( ) -+ Zo (dx)
— [ symigs () -+ o ()] Za( ) -+ Za(dy):

(Hj(x) denotes again the j-th Hermite polynomial with leading Goeit 1.)

Proof of Theorem 4.2Me have already seen thatis an isometry. So it remains to
show that it is a one to one map from Exf; to . and from.J# to /.

The one-fold integralg(f), f € /&, agrees with the stochastic integtaf)
defined in Chapter 3. Hencl(€(™)) = X(n) in the discrete field case, and
lc(§) = X(9), ¢ € .7, in the generalized field case. Henkg ¢ — 4 is
a unitary transformation. Lepy, ¢2,... be a complete orthonormal basisjﬁfGl.
Thenéj = [¢;(X)Za(dx), j = 1,2,..., is a complete orthonormal basis g .
Itd’s formula implies that for all sets of positive integdis, ..., jm) the random
variableHj, (é1)---Hj, (ém) can be written as § + - - - + jm-fold Wiener—Ib inte-
gral. Therefore Theorem 2.1 implies that the image of Egpis the whole space
2, andlg: Exps#s — S is unitary.

The image of.Zg' contains.zb because of Corollary 2.4 and¥ formula.
Since these images are orthogonal for differenformula (2.1) implies that the
image of %' coincides withJz;,. Hence(n!)l/ZIG: HE — 4 s a unitary trans-
formation. ad

The next result describes the action of shift transfornmatio .. We know by
Theorem 4.2 that al) € 2# can be written in the form

n= fﬁié/ fa(Xs - 0 Za(d) ... Zo(d%) (4.9)

with f = (fo, f1,...) € EXp.#4 in a unique way, wher&g is the random measure
adapted to the stationary Gaussian field.

Theorem 4.4.Letn € s have the form (4.9). Then

T =fot+ 3 o [T, Za(dx). . Zo(dx)
n=1""
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forallt € RV in the generalized field and for all¢ Z, in the discrete field case.

Proof of Theorem 4.8Because of formulas (3.9) and (3.10) and the definition of the
shift operatorT; we have

T (/é<”-x>ze(dx)> — TiX = Xt = /é<tvx>é<"~x)ze(dx), teZy,
and because of the identifyp (x) = [ (X p(u—t)du= &t (x) for ¢ € .7

T ( / cﬁ(x)zG(dx)) — TX(#) = X(T4)
—/é” Zo(dx), ¢pe.7, teR,

in the discrete and generalized field cases respectivehcéie

Tt(/f(X) > /e'” XZo(dx) if fe

forallt € Z, in the discrete field and for alle RV in the generalized field case. This
means that Theorem 4.4 holds in the special case whisra one-fold Wiener—it
integral. Letfi(X),..., fm(X) be an orthogonal system i#z}. The set of functions
dtXf1(x),...,e0¥ fy(x) is also an orthogonal system ifZ. (t € Z, in the dis-
crete and € RY in the generalized field case.) Hencé'dtformula implies that
Theorem 4.4 also holds for random variables of the form

n= H,l(/fl zde> </fm )

and for their finite linear combinations. Since these lineanmbinations are dense
in 2 Theorem 4.4 holds true. O

The next result is a formula for the change of variables inn&fiel® integrals.

Theorem 4.5.Let G and G be two non-atomic spectral measures such that G is
absolutely continuous with respect t6,@nd let dx) be a complex valued function
such that

P01 = Ga0

For every f= (fo, f1,...) € Exp.#Z¢, we define
fhi(X1, .. %) = fa(Xa, .., X0)g(X1) - g(%n), n=121,2,..., fi=fo.

Then f = (fg, f{,...) € ExpZg, and
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fo+z / a0, %) Z6(dx) . Zo( d)
2ipe 3 o [ e (da). . Zo(dn),

where & and Zy are Gaussian random spectral measures corresponding to G
and G.

Proof of Theorem 4.8Ne havel| f/ ||z = || fnll, hencef’ € Exp#y. Let 1, ¢, ...
be a complete orthonormal systemigt. Theng;, ¢5, ..., ¢i(x) = ¢;(x)g(x) for

all j=1,2,... is a complete orthonormal systemMl All functions f, € ¢
can be written in the fornf (xy,..., %)) = 3 Cj, ... JnSym(qul(xl) ¢jn(%n)). Then
f/(X1,...,%) = 3 Cj,.... JnSym(ci)h(xl) <95, (%)). Rewriting all terms

[ Sym(g1,00) -+ 93,60 Z6( e . Ze (. )

and
/Sym(¢j1(x1)«~¢jn(xn))ZG/(dx1).‘.ZG/(,dxn)

by means of ib’s formula we get thaf and f’ depend on a sequence of independent
standard normal random variables in the same way. Theorgims groved. O

For the sake of completeness | present in the next Lemma 4emtype of
change of variable result. | formulate it only in that simpése in which we need it
in some later calculations.

Lemma 4.6.Define for all t> 0 the (multiplication) transformation:X = tx either
from R’ to R’ or from the torus|—m, )Y to the torus[—tm,tm)Y. Given a spec-
tral measure G on Ror on [, m)" define the spectral measure Gn R’ or on
[—tm,tm)Y by the formula GA) = G(TA) for all measurable sets A, and similarly
define the functiongf(xq,...,X) = fk(txa,...,tx) for all measurable functions, f
of k variables, k=1,2,..., with x; € RV or x; € [, )" for all 1 < j <k, and put
for = fo. If f = (fo, f1,...) € EXp#4G, then { = (foy, f1y,...) € Exp#g,, and

f0+2/—fn X0, %) Z(dx1) ... Zo( )

a foﬁn;m/fn,t(xl,...,xn)zet(dxl)...zet(dm),

where % and Z;, are Gaussian random spectral measures corresponding to G
and G.

Proof of Lemma 4.6t is easy to see thdt = (foy, f1t,...) € EXpiZs,. Moreover,
we may define the random spectral measigein the identity we want to prove by
the formulaZg, (A) = ZG(/%). But with such a choice afg, we can write even=

instead of2 in this formula. |
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The next result shows a relation between Wick polynomiats\afiener—I6 in-
tegrals.

Theorem 4.7.Let a stationary Gaussian field be given, and lgtdnote the ran-
dom spectral measure adapted to it. LEKR...,Xm) = 5 Cj;....jsXj, - - - Xj, b€ @ ho-
mogeneous polynomial of degree n, and let h ,hy, € %%1 (Here j1,...,jnaren
indices such that < jy <mforall1<| <n. Itis possible that|j= j- also if | #£1".)
Define the random variable§ = [ h;(x)Zg(dx), j =1,2,...,m, and the function

(P(EL,. ., Em): :/I5(u1,...,un)ZG(dul)...ZG(dLh).

Remarklf Pis a polynomial of degrem, then it can be written &= P, + P>, where
P; is a homogeneous polynomial of degreendP; is a polynomial of degree less
thann. Obviously,

P&, Em): =1 P&, Em):

Proof of Theorem 4.7t is enough to show that
&G = [ P (u) -y (Un)Za(du) . Zo(du).

If hy,...,hm € %”é are orthonormal, (all functionk, have norm 1, and if # I,
thenh, andh, are either orthogonal dy = hy/), then this relation follows from a
comparison of Corollary 2.3 withdts formula. In the general case an orthonormal
systemhy, ..., hy can be found such that

m —
hjz Cj,khk; j:l,...,m
&

with some real constantg . Setng = [ HjZG(dx). Then

. EJl .. 'Ejn: = <kzlcjl’kr’k> ... (kzlcj”’knk> .

= > Citk Cinka M My’
ki, kn

= 3 Gk Cinka | Pig(U) P (W) Zo(dun) ... Zo ()
kn

K
- /h,—l(ul).--hjn(un)ze(dul)...zG(dLh)

as we claimed. a

We finish this chapter by showing how the Wienebtitegral can be defined if
the spectral measui@ may have atoms. We do this although such a construction
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seems to have a limited importance as in most applicatiomsdstriction that we
apply the Wiener—f integral only in the case of a non-atomic spectral meaGure
causes no serious problem. If we try to give this definitiomiodifying the original
one, then we have to split up the atoms. The simplest way wedféar this splitting
up, was the use of randomization.

Let G be a spectral measure B, and letZg be a corresponding Gaussian spec-
tral random measure on a probability spae <7, P). Let us define a new spectral
measures = G x /\[7%7%1 onRVt1, where)\[f%_’%] denotes the uniform distribution

on the interva[—3, 3. If the probability spacéQ, =7, P) is sufficiently rich, a ran-
dom spectral measui®; corresponding tds can be defined on it in such a way
that Zg(A x [~1,3]) = Zg(A) for all A€ #". For f € # we define the func-
tion f € ij” by the formulaf (y1,...,¥n) = f(X1,...,%n) if y; is the juxtaposition
(xj,Uj), Xj €R’, uj € RY, j=1,2,....n. Finally we define the Wiener-atintegral
in the general case by the formula

[ 1000 Za(dx) . Zo(dx) = [ Fly o) Ze(d) - Ze(dyn).

(What we actually have done was to introduce a virtual newdioateu. With the
help of this new coordinate we could reduce the general acasiect special case
whenG is non-atomic.) IfG is a non-atomic spectral measure, then the new defini-
tion of Wiener—Ib integrals coincides with the original one. It is easy toakhis
fact for one-fold integrals, and therdl$ formula proves it for multiple integrals. It
can be seen with the help obls formula again, that all results of this chapter re-
main valid for the new definition of Wienerélintegrals. In particular, we formulate
the following result.

Given a stationary Gaussian field &t be the random spectral measure adapted
toit. All f € % can be written in the form

e, o%) = 3 Ciy,ojn®ia (Xa) -+ B (Xn) (4.10)

with some functiong € ¢, j = 1,2,.... Defineé; = [ ¢;(X)Zs(dXx). If f has the
form (4.10), then

/f(x17...,xn)ZG(dxl)...ZG(dxn) S Zch,--.Jn 2y € -

The last identity would provide another possibility for aérfig Wiener—16 integrals
also in the case when the spectral measurneay have atoms.






Chapter 5

The Proof of I1td’s Formula: The Diagram
Formula and Some of Its Consequences

We shall prove ib’s formula with the help of the following
Proposition 5.1.Let f € /% and he #Z. Let us define the functions

f>k<h(xl,...,xk_l,xk+1,...,xn):/f(xL...,xn)h(xk)G(d)@, k=1,...,n,

and
fh(Xe, ..., Xn+1) = F(Xa, -+, Xn)N(Xnt1)-

Then fx h, k=1,...,n, and fh are in#Z~* and .#2"** respectively, and their
k
norms satisfy the inequalityf >Ifh|\ <|If]|-||hl] and]| fh|| < ||| - ||h]|. The relation

n

nllg(f)lg(h) = (n+1)!Hg(fh)+ z (n—lg(f >k<h)
k=1

holds true.

We shall get Proposition 5.1 as the special case of the diagwanula formu-
lated in Theorem 5.3.

RemarkThere is a small inaccuracy in the formulation of Proposiiol. We con-
sidered the Wiener-8tintegral of the functionf x h with arguments,. .., Xk_1,
k

Xki1,- - - » Xn, While we defined this integral for functions with arguments.. ., X, _1.
We can correct this inaccuracy for instance by reindexiegvriables off x h and
k

working with the function
(f >|§ h)/(X]_7 e ,Xn,]_) =f >k< h(Xak(l), e aXak(kfl)vxak(kJrl)a e ,Xak(n))

instead off >k< h, whereay(j) = jfor1 < j<k-—1,anday(j)=j—1fork+1<
j<n
We also need the following recursion formula for Hermiteymamials.

43
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Lemma 5.2.The identity
Hn(X) = XHn-1(X) = (n—1)Hp—2(x) for n=1,2,...,

holds with the notation H; (x) = 0.

Proof of Lemma 5.2.

a2 9 e e d —x2/2
Ho( = (1“2 (e7/2) = —e%2 (Hn-109e™72)

d
=X anl(x) - &anl(x).
Since %Hn,l(x) is a polynomial of orden — 2 with leading coefficienh — 1 we
can write

n-3
%(Hn_l(x) = (N—1)Hp_2(x) + J;)c,- Hj (x).

To complete the proof of Lemma 5.2 it remains to show that el#st expansion
all coefficientscj are zero. This follows from the orthogonality of the Hernptaly-
nomials and the calculation

[ /21,00 S 1000x= — [ 1005 (e /2H, ) x

_ / e /2,1 (X)Pj11(x)dx=0

with the polynomialP; 1(x) = xH;(x) — dQXH,- (x)oforderj+1forj<n-3. O

Proof of Theorem 4.3 via Proposition 5\We prove Theorem 4.3 by induction with
respect td\. Theorem 4.3 holds faN = 1. Assume that it holds fdl — 1. Let us
define the functions

f(X1,. ., XN-1) = 91(X1) - - ON—1(XN—1)
h(x) = gn(X).
Then

3= [ o)+ on(xn)Zo(dx) . Zo( )

— Nlig(fh) = (N=1)!g(f)lg(h) _Nf(N ~2)ll(f xh)
k=1

by Proposition 5.1. We can write because of our inductioroktygsis that
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3 =ty [ 01002009 -+ Hyp (] g 9200 )
Hin-1 [ 600260 [ dnix1Za(ds
~Cim= Dt ([ 0102600 ) -y ([ 0102600
i 2 [ 0m(9Z6(89)).

whereH;, _»(x) =H_1(x) =0 if j;m = 1. This relation holds, since

f >k< h(Xl, ey X1 Xk 1y e - ,XNfl) = /gl(Xl) s ngl(XN—l)(Pm(Xk)G(ka)

_ {0 if KSN—jm
Tl on(X) O (k1) Ok (K1) - On-1(w-1) EN— jm<k<N-—-1

Hence Lemma 5.2 implies that

0 = T #:920( ) [ [ 8020t 2)) [ omixizat s

~(im— M2 ( / ¢m<x>ze<dx)>} —ﬂH,—s ( / ¢s(x>ze(dx>),

as claimed. a

Let us fix some functionb; € 74%,... hm € ij”"‘. In the next result, in the so-
called diagram formula, we express the produdts(hy) - --nm!lg(hm) as the sum
of Wiener—I9 integrals. This result contains Proposition 5.1 as a apease. There
is no unigue terminology for this result in the literaturee ¥hall follow the notation
of Dobrushin in [7]. We introduce a class of diagragdenoted by (ng, ..., ng)
and define with the help of each diagranin this class a functiotn, which will
be the kernel function of one of the WieneB-integrals taking part in the sum
expressing the product of the Wieneb-Ihtegrals we investigate. First we define
the diagramg and the function$,, corresponding to them, and then we formulate
the diagram formula with their help. After the formulatiofitbis result we present
an example together with some figures which may help to utatetsetter what
the diagram formula is like.

We shall use the term diagram of ordes, . ..,nyn) for an undirected graph of
n; + - -- 4+ Ny vertices which are indexed by the pairs of integgrs), | = 1,...,m,
i=1,...,m, and we shall call the set of verticeg|), 1 < j < n thel-th row of the
diagram. The diagrams of ordém, ..., ny) are those undirected graphs with these
vertices which have the properties that no more than one eulges into each ver-
tex, and edges can connect only pairs of vertices from differows of a diagram,
i.e. such vertice§ji,11) and(jz,l2) for whichly #12. Letl” =T (ng,...,nm) denote
the set of all diagrams of ordén, ..., Nm).
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Given a diagrany € I' let |y| denote the number of edges yn Let there be
given a set of functiong; € 3%"1,. ..,hme %’é‘m. Let us denote the variables of
the functionh, by Xj ) instead ofxj, i.e. let us writehy (X)), ..., Xn 1)) instead
of hj(X1,...,Xy ). PUtN =ng + --- 4+ nym. We introduce the function d¥l variables
corresponding to the vertices of the diagram by the formula

m
h(X(“), I=1...,m j= 17...,n|) = r!h|(X(j,|>, j= 1,...,n|). (5.1)
|=

For each diagrany € ' = " (ny,...,nm) we define the reenumeration of the
indices of the function in (5.1) in the following way. We enerate the variables
X(j,1y In such away that the vertices into which no edges enter wilefthe numbers
1,2,...,N —2|y|, and the vertices connected by an edge will have the numbers
andp+|y|, wherep=N-2]y|+1,...,N—y|. In such a way we have defined a
functionh(xs, ..., xy) (with an enumeration of the indices of the variables dependi
on the diagrany). After the definition of this functiorh(x,...,xy) we take that
function ofN — |y] variables which we get by replacing the argumegts, .., by
the arguments-Xy_zyj4p, 1 < p < |y| in the functionh(xy, ..., Xy ). Then we define
the functionh, appearing in the diagram formula by integrating this fumctdy the

Iyl
product measurg] G(dXy_z|y+p)-
p=1

More explicitly, we write

hy(X1, - Xn—2)y) = /"'/h(xla---7XN—\y\7_XN—2|y|+17--~a_XN—|y\)

G(dXN—Z\yH-l)-~~G(dXN—\y|)- (5.2)

The functionh, depends only on the variables, ..., x\_2), i.€. it is independent
of how the vertices connected by edges are indexed. Indeéallows from the
evenness of the spectral measure that by interchangingdieess ands+ y of two
vertices connected by an edge we do not change the value witéigealh,. Let us
now consider the Wienerdtintegrals|y|!lg(hy). In the diagram formula we shall
show that the product of the Wienei&lintegrals we considered can be expressed
as the sum of these Wienerélintegrals. To see that the identity appearing in the
diagram formula is meaningful observe that although thetionh, may depend on
the numbering of those vertices pfrom which no edge starts, the function Sk
and therefore the Wienerélintegrallg(hy) does not depend on it.

Now | shall formulate the diagram formula. Then | make a reékrelvout the
definition of the functiorhy in it and discuss an example to show how to calculate
the terms appearing in this result.

Theorem 5.3. (Diagram Formula.)For all functions h € %’g‘l,. N 7l
ni,...,Nnm=212,..., the following relations hold:

A) e and|hy| < ] [Ihj] forall ye .
j=1
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(B) m! |G(h1) cee nm!IG(hm) = ygr(N — 2‘)/‘)' IG(hy)-

Herel" =T (ng,...,nm), and the functions hagree with the functions,fdefined
before the formulation of Theorem 5.3. In particulayvas defined in (5.2).

Remark 1In the special casen= 2, n; = n, np = 1 Theorem 5.3 coincides with

Proposition 5.1. To see this it is enough to observetihak) = h(x) for all h € 2.

Remark 20bserve that at the end of the definition of the functipwe replaced the
variablexy |y, p by the variable-xy_zy;.+ p and not byxy_z)y,.p. This is related to
the fact that in the Wiener-8tintegral we integrate with respect a complex valued
random measur&g which has the propertf Zg(A)Zg(—4) = EZg(A)Zs(4A) =
G(4), whileEZg(A)Zs(A) =0if AN(—A) = 0. In the case of the original Wiener—
Itd integral considered in Chapter 7 the situation is a bieddit. In that case we
integrate with respect to a real valued Gaussian orthoriarrmaom measuré,,
which has the propert&Zﬁ (A) = u(4). In that case a diagram formula also holds,
but it has a slightly different form. The main differencehat in that case we define
the functionh, (because of the above mentioned property of the random mesasu
Z,,) by replacing the variabley_ |y, , by the variable gy p.-

To make the notation in the diagram formula more understaledet us consider
the following example.

ExampleLet us take four functionk; = hy (X1, X2, X3) € Jfé’ hp =ha(x1,X%0) € ffé
hs = hz(Xq,%2,X3,X4,X5) € :%%5 andhg = ha(Xq,%2,X3,Xa) € 22, and consider the
product of Wiener—f integrals 3lg(h1)2!lg(h2)5!(hs)4!s(hs). Let us look how
to calculate the kernel functidm, of a Wiener—Id integral(14—2|y|)!lg(hy), y €

I (3,2,5,4), appearing in the diagram formula.

We have to consider the class of diagram8,2,5,4), i.e. the diagrams with ver-
tices which are indexed in the first row ék 1), (2,1), (3,1), in the second row as
(1,2), (2,2), in the third row in ag1,3), (2,3), (3,3), (4,3), (5,3) and in the fourth

row as(1,4), (2,4), (3,4), (4,4). (See Fig. 5.1.)

11) 1) 3.1)

1.2) (2.2)
(1.3) (2.3) (3.3) (4.3) (5.3)

1.4) (24) (3.4) 449

Fig. 5.1 The vertices of the diagramse I (3,2,5,4).
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Let us take a diagram € I (3,2,5,4), and let us see how we can calculate the
kernel functiorhy, of the Wiener—Id integral corresponding to it. We also draw some
pictures which may help in following this calculation. Let consider for instance
the diagrany e I' (3,2,5,4) with edgeq(2,1),(4,3)), ((3,1),(1,3)), ((1,2),(2,4)),
((2,2),(5,3)), ((3,3),(3,4)). Let us draw the diagramp with its edges and with
such a reenumeration of the vertices which helps in writipghe functionh(-)
(with N = 14 variables) corresponding to this diagrgrand introduced before the
definition of the functiorh,.

The function defined in (5.1) equals in the present case

h1(X(1,1),X2,1)5 X(3,1)) h2(X(1,2), X(2.2))N3(X(1.3), X(2,3) X(3,3), X(4.3), X(5.,3))
Na(X(1,4), X(2.4): X(3.4), X(4.4))-

The variables of this function are indexed by the labels efértices ofy. We made

a relabelling of the vertices of the diagraymin such a way that by changing the
indices of the above function with the help of this relalgjliwe get the function
h(-) corresponding to the diagram In the next step we shall make such a new
relabelling of the vertices of which helps to write up the functions, we are
interested in. (See Fig. 5.2.)

13

Fig. 5.2 The diagramy we are working with and the reenumeration of its vertices.

The functionh(-) (with N = 14 variables) corresponding to the diagrgican be
written (with the help of the labels of the vertices in thea®t diagram) as

h(X17 X2, .. >Xl4>
= hy1(x1,%s5,Xs)N2(X7, Xg)N3(X11, X2, X9, X10, X13) N4 (X3, X12, X14, X4).

Let us change the enumeration of the vertices of the diagnamwiay which cor-
responds to the change of the argumeqts,|, , by the arguments xy_zy(;.p- This
is done in the next picture. (In this notation the sign) denotes that the variable
corresponding to this vertex isxy_z|y+p and oty _zy|4p- (See Fig. 5.3.)

With the help of the above diagram we can write up the function
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N(X, - XNy = XN=2yi 10— XN yt)
corresponding to the diagrayin a simple way. This yields that in the present case
the functionh, defined in (5.2) can be written in the form
hy(Xl7X27X37X4) :/“'/hl(X17X57X6)h2(X77X8)h3(7X63X27X977X5;7X8)
hs(X3, —X7, —Xg,X1)G( dx5)G(dxs)G(dx7)G( dxg)G( dxg).

3 7.(-) 9,(-) 4

Fig. 5.3 The diagram applied for the calculationlgf The sign— indicates that the corresponding
argument is multiplied by-1.

Here we integrate with respect to those variableshose indices correspond to
such a vertex of the last diagram from which an edge staren Tiie contribution of
the diagramy to the sum at the right-hand side of diagram formula equais(#))
with this functionh,.

Let me remark that we had some freedom in choosing the entioreicf the
vertices of the diagram. Thus e.g. we could have enumerated the four vertices of
the diagram from which no edge starts with the numbers 1, Bd3lan an arbitrary
order. A different indexation of these vertices would leadatdifferent function
h, whose Wiener— integral is the same. | have chosen that enumeration of the
vertices which seemed to be the most natural for me.

Naturally the product of two Wienerétintegrals can be similarly calculated,
but the notation will be a bit simpler in this case. | brieflyoshsuch an example,
because in the proof of Theorem 5.3 we shall be mainly intedds the product of
two Wiener—I6 integrals.

Example 2Take two Wiener—h integrals with kernel functions, = hy (X1, X2, X3) €
A3 andhy = hy (X1, X2, X3, Xa, X5) € 7, and calculate the productig{(hy)5!1g(hy)
with the help of the diagram formula.

I shall consider only one diagrayre I (3,5), and briefly explain how to calculate
the kernel functiorhy, of the Wiener—Id integral corresponding to it. Let us consider
for instance the diagram € I (3,5) which contains the edg€$2,1),(3,2)) and
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((3,1),(5,2)). Then the same calculation as before leads to the intraztucfi the
diagram (Fig. 5.4).

2 3 5(-) 4 6,(-

Fig. 5.4 A diagramy with reenumerated vertices that shows how to calculate thatitumh,.

This picture yields the following definition of the diagramin the present case.
hy (X1, %2, X3, Xa) = / h1 (X1, Xs,X6)2(X2, X3, —X5, X4, —X6) G(dX6) G( dX).

Proof of Theorem 5.3t suffices to prove Theorem 5.3 in the special case 2.
Then the casen> 2 follows by induction.

We shall use the notatiom = n, np = m, and we writexy, ..., Xn m instead of
X(1,1)s > X(n1),X(1.2) - - -» Xm,2)- It is clear that the functioh,, satisfies Property (a)

of the classes%ZG”*m*z'V‘ defined in Chapter 4. We show that Part (A) of Theo-
rem 5.3 is a consequence of the Schwartz inequality. Thdiabf this inequality
means in particular that the functiohg satisfy also Property (b) of the class of

M2
functions. 7z ™M,

To prove this estimate on the normlgfit is enough to restrict ourselves to such
diagramsy in which the verticegn,1) and (m,2), (n—1,1) and(m-1,2),...,
(n—k,1) and(m—k,2) are connected by edges with some & < min(n,m). In
this case we can write

|hy(xl7 cos Xn—k—1;Xn+15 - - - aXn+m7k71) |2

= '/hl(X17~~axn)hz(xn+l7~~~axn+mk17_Xnk7~~~,_xn)

2
G(dX—k)...G(dx)

g/|h1(x1,...,xn)\ZG(dxn,k)...G(dxn)

[ 2001, ) PG @ k) -G )
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by the Schwartz inequality and the symmeB8y—A) = G(A) of the spectral mea-
sureG. Integrating this inequality with respect to the free vhlés we get Part (A)
of Theorem 5.3. N

In the proof of Part (B) first we restrict ourselves to the cadenh; € 77

andhy € J2%". Assume that they are adapted to a regular sy@m {4y, =

+1,...,£N} of subsets oR" with finite measuré&s(4;), j = +1,...,+N. We may

even assume that all; € 7 satisfy the inequality3(4;) < € with somee > 0 to be

chosen later, because otherwise we could split up the/sétgo smaller ones. Let

us fix a pointu; € A; in all setsAj € 2. PutK; = sup|hj(x)|,i = 1,2, and letA be a
X

cube containing alfy;.
We can write

I =nllg(hy)mllg(hy) Z ha (Ui, ..., Uj,) N2 (U, - - -, Uky)
Zg (All) ’ ZG(Aln)ZG(Akl)'“ZG(Akm)

with the numbersyj, € Aj, anduy, € Ay, we have fixed, where the summation in

>’ goes through all pair$(j1,...,jn), (ki,...,km)), jp, k € {£1,....,£N}, p=
1,...,n,r=1,...,m such that, # +jgandk # +krif p# porr #r.
Write

| = Z zyhl(uh,.. .,an)hz(ukl,...,ukm)
ye
Z6(4jy) -+ Zo(4jn)Z6 (D) - Z6(Bkin)

wherey " contains those terms q’ for which j, =k or jp, = —k; if the vertices
(1,p) and(2,r) are connected iy, and j, # +k; if (1,p) and(2,r) are not con-
nected. Let us define the sets

A1 =A(y)={p: pe{l,...,n}, and no edge starts frofp, 1) in y},
A =Ax(y)={r: re{1,...,m}, and no edge starts frofn, 2) in y}

and

B=B(y) ={(pr): pe{l....n},ref{l,....mj
(p,1) and(r,2) are connected ip}

together with the mapr: {1,....n}\ A1 — {1,...,m}\ Ay defined as
a(p)=r if (p,r)eB forall pe{l,...,n}\As. (5.3)

Let =¥ denote the value of the inner sy for somey € I" in the last summation
formula, and write it in the form

sV=5V+5)

with
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= =S (U, U (U, - ) T Ze(45,) [ Ze(d%)
peAq refy

E (Zs(4),)Zc(4x,))

(p,r)eB

and

Zzy :thl(uj'l,...,an)hz(ukl,.‘.,Ukm) pg ZG(Ajp)rE ZG(AK,)
1

2

ZG(Ajp)ZG(Akr)—E( I ZG(Ajp)ZG(Akf)ﬂ-

(p,r)eB (p,r)eB

The random variableg) and =) are real valued. To see this observe that if the
sum defining these expressions contains a term with argsmgntand4y, then

it also contains the term with argumentsl;, and —Ay . This fact together with
property (v) of the random spectral measidrgand the analogous property of the
functionshy andhy imply that>) = =) and>} = 5J. Hence these random variables
are real valued. As a consequence, we can b¢andn—2|y|)!lg(hy) — =} and=)

by means of an estimation of their second moment.

We are going to show tha! is a good approximation dh+m-—2y|)!1g(hy),
and =) is negligibly small. This implies thatn + m— 2|y|)!lg(h,) well approxi-
matesZ”. The proofs are based on some simple ideas, but unfortyrthist de-
scription demands a complicated notation which makes thaiting unpleasant.

To estimate(n+m— 2|y|)!Ig(h,) — = we rewriteZ} as a Wiener— integral
which can be well approximated fyn+ m— 2|y|)!lg(hy). To find the kernel func-
tion of this Wiener—Id integral we rewrite the sum defini@f by first fixing the
variablesu;,, p € A1, andug, I € Az, and summing up by the remaining variables,
and after this summing by the variables fixed at the first ¢pget that

= hya(ip. PE€ AL ke, T € Ay)
jp: 1<]jp|<N for all peAg
ke : 1<|kr|<N for all reAy

Zs(8j,) [ Ze(8k) (5.4)

pei; re

with a functionhy, ;1 depending on the argumengs, p € Ay, andk, r € Ay, with
valuesjp, k € {£1,...,£N} defined with the help another functidy» described
below. The functiorhy, also depends on the argumengs p € Ay, andk;, r € Ay,
with valuesjp, ke € {£1,...,£N}. More explicitly, formula (5.4) holds with the
functionhy 1 defined as

hy1(ip, PE€ AL k,r €A2) =0 (5.5)
if the numbers in the sett-j,: pe At} U{£k : r € A} are not all different, and

hy1(ip, PEAL K, r € A2) =hy2(jp, PE AL ke, T €A2) (5.6)
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if all numbers+jp,, p € Ay, and+k, r € Ay are different, where we define the
functionhys(jp, p € A1, ki, 1 € A) for all sequencegp, p € A; andk;, r € Ay,
with jp,k € {£1,...,£N} (i.e. also in the case when some of the argum¢pits
p € Ag, orke, r € Ay, agree) by the formula

hya(ips PE ALK, T € A) = 3" MUy, Ujy (Ui - Uiy
[1 E(Zs(4),)Za(4k))- (5.7)

(p,r)eB

The sumy ¥ in formula (5.7) which depends on the argumejpsp € A;, andk;,

r € Ay, is defined in the following way. We sum up for such sequeriges. ., jn)
and (ki, ..., km) whose coordinates witlp € A; andq € A, are fixed, and agree
with the argumentg, andk; of the functionhy > at the left-hand side of (5.7) and
whose coordinates with indicgse {1,...,n}\ A; andr € {1,...,m}\ A, satisfy
the following conditions.

PutC = {jp, p€ At} U{=£k,r € Ao}. We demand that all numbeig and
k- with indicesp € {1,...,n} \ Ar andr € {1,...,m} \ A; are such thaf,,k €
{#1,...,+£N}\ C. To formulate the remaining conditions let us write all niar
re{l,....m\Azinthe formr = a(p), p<€ {1,...,n}\ Ay with the mapa defined
in (5.3). We also demand that only such sequences appea suthmation whose
coordinatek; = kg () satisfy the conditiorky ) = £jp forall pe {1,...,n}\ Ag.
Besides, all numbersj,, p € {1,...,n}\ A, must be different. The summation
in ZV’l is taken for all such sequencgs, p € {1,....n} andk, r € {1,...,m},
whose coordinates with€ {1,...,n} \ Ay andr € {1,...,m}\ A, satisfy the above
conditions.

Formula (5.7) can be rewritten in a simpler form. To do thisule first observe
that the conditiork, () = & can be replaced by the conditiép ;) = —jp in it,
and we can writés(4;,,) instead of the ternk Zs (4 ,)Zc (4, ) (with (p,r) € B) in
the product at the end of (5.7). This follows from the fact8ds(4;,)Zc (4, ) =
EZs(4j,)? = 0if ke = jp andEZs(4j,)Ze(8y, ) = EZ6(4},Z6(—4j,) = G(4),) if
k- = —jp. Besides, the expression in (5.7) does not change if we takenstion for
all such sequences for which the numipgwith coordinatep € {1,...,n}\ Atakes
all possible valuegp € {£1,...,£N}, because in such a way we only attach such
terms to the sum which equal zero. This follows from the faat both function$;
andh; are adapted to the regular systémhencehy (uj,, ..., uj, )z (U, . .., Uk,) =
Oif for anindexp € {1,...,n} \ Ay jp = £]jy with somep # p’ or j, = —k; with
some(p,r) € B, and the same relation holds if there exists safme A, such that
jp =tk

The above relations enable us to rewrite (5.7) in the folhgnsimpler form. Let
us define that map—* on the se1,...,m} \ Ay which is the inverse of the map
defined in (5.3), i.ea~1(r) = pif (p,r) € B. With this notation we can write
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hyz(]p, pe Al7 kl’a re AZ)
= Z hi(uj,,... uj)ho(u, r € Az,—ujrl(r), re{l,....mH\Ay)

G(4jp)- (5.8)

Formula (5.8) can be rewritten in integral form as

hy2(jp, PE AL, ke, T € Ag) (5.9)
~ [ MU, e AL X, PE (L0} \ A)

hz(ukr7 rehy, _Xafl(r)7 re {1,...,m}\A2) |_| G(pr)
pe{1,...,n}\Ay

We define with the help oh, 1 and h,» two new functions orR™m-2V)v
with argumentsxy, . .., Xnym-2jy- The first one will be the kernel function of the
Wiener-Id integral expressing{, and the second one will be equal to the func-
tion hy, defined in (5.2). We define these functions in two steps. Infitise step
we reindex the arguments of the functidms, andh,, y to get functions depend-
ing on sequences, ..., jnim-2)y- FOr this goal we list the elements of the sets
Ay and Ay as Ay = {p1,..-, Prjy} With 1 < pp < pp < -+ < pppy < N and
A = {rl,...,rm,M} with 1 <rp <rz <.+ <ryy <m and define the maps
Bi: Ar—{1,....n—|y]} andBz: A; — {n—|y|+1,....n+m—2|y]} by the
formulasBi(p) =1if 1 <l <n—y, 1<l <n-—|y, andB(r)) =1+n—1y,
1<l <m-—|y,if n—=|y|+1 <1 <n+m-2|y|. We define with the help of the
mapspPy and B, the functions

hya(iss - dnem-2y1) = Bya(igyra) -5 Igun=1v) KBo() - - Kgp(m- 1))

and

hya(js, -, Jnem-21y) = Ny2(igyry)s -+ Iy n-1y1)) KBo(1) - > Kpp(me 1))

where the arguments of the functiohgs andhy 4 are sequenceg, . .., jnim-2yy
with jse€ {£1,...,£N} forall1<s<n+m-2Jy|.

With the help of the above functions we define the followingdiionsh, s and
hy,6 on R(n+m—2|y\)v_

hy,3(j1a~--7jn+m—2|y\) if x € 4,
hy (X1, - -, Xnem-2)y) = forall1<1 <n+m-2Jy|
0 otherwise,

and
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hy,4(j17~-->jn+m—2|y\) if x €4,
hy,G(Xl7--->Xn+m72\y\): forall 1< §n+m—2|)/|
0 otherwise.

It follows from relation (5.5) and the definition of the furar hy, 5 (with the help

of the definition of the functionby, 1 andhy 3) thath, 5 € 2, and it is adapted to
the regular systeny. Then relations (5.4) and the definitionlnfs also imply that
5 = (n+m—2y)!lg(hys).

On the other hand, | claim that the functibpdefined in (5.2) satisfies the iden-
tity hy = hy 6. At this point we must be a bit more careful, because we didiatihe
the functionhy, in a unique way. The function we get by permuting the indices o
its variables could be also considered as the fundtiprThis causes no problem,
because we are interested not in the functipiitself but in the expressiols(hy)
which does not change if we reindex the variables of the fanct,. We shall define
the functionh, with a special (natural) indexation of its variables, andpnave the
identity hy = hy ¢ for this function.

To prove the desired identity first we recall the definition tbat function
h(xa,...,X+m) (depending on the diagrag) which was applied in the definition
of hy,. Here we shall use a notation similar to that applied in thiindien of the
functionhy e.

PutA; = {p1,. ., Pr—jy 1, 1< pr< P2 <+ < Pryys

{Loon\Ac={an, ), 1<d<ge < <y,

andAy = {ry,...,fm_py 1, 1< <ra < <y,

{L...omP\ Ao ={d,....d;}, 1<aq<dp<--<d,

and define with their help the following functions. Define thaction 3(-) on the
set{l,...,n} asB(k) =sif k= pse€ Ay, andB(k) =n+m-2]y|+tif k=1 €
{1,...,n} \ Ay. Define similarly the functiod(-) on the set{fn+1,...,n+m} as
0(k)=s+]y|if k—=n=gse Ap. If k—n=1I/ € {1,...,m}\ Ay, then there is an edge
(I, 1) € B of the diagrany, and we defind (k) = n—|y| +t with the indext of the
numberl; in this case.

With the help of the above notations we can define the fundtiag, . .., Xy +m)
which takes part in the definition &, in formula (5.2) as

h(X]_, e 7Xn+m) = hl(xﬁ(l)a . aXB(n))hZ(X5(n+1)a R 7X(g(m_m)).

To define the kernel function of the integral in (5.2) obseha the sef{d(n+
1),...,6(n+m)} agrees with the sn—|y|+1,....,n+m—2]y|} U{n+m—|y| +
1,...,n+m} = CLUC,. Putd(k) = (k) if d(k) € C1 and (k) = (k) — |y] if
0(k) € Cy. Let us also introduce(j) =1if n—|y+1<j<n+m-2y, and
e(j)=-1if n+m—2]y|+1 < j <n+m-—|y|. With such a notation we can write
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N(XL, - Xneme |y —Xnem-2yi+1s- - - —Xnem-|yi)

= hy(Xg(1); - > Xg(n))N2(€(S(N+ 1))Xg(n+1), ., &(0(n+ m))Xg(er))

as the kernel function in the integral (5.2) defining the tioxchy(xq, .. ., X m-2)y|)
in the present case.

By formula (5.2) we can calculate the functip(xa, ..., X, m-2)y) by inte-
grating the above defined functitxy, . . ., Xnym—|yi» —Xn+-m—2yi+1> - - - > —Xnm—|y|)
with respect to the measu@ dxy_o|y+1) --- G(dxn_}y)- By comparing this for-
mula with the definition of the functioh, » defined in (5.9) together with the defini-
tion of the functionsh, 4 andh, s with its help one can see that the identitys = hy,
holds.

We want to comparés(hys) with Ig(hy6). For this goal we have to understand
where the function$, s andh, g differ. These are those poingsy, ... ,xn+m_2w|)
where the functiorhy 5 disappears while the functidm, ¢ does not disappear. Ob-
serve thatin such pointsy, . .., X, m_2y) wherex € 4j, 1 <1 <n+m-2[y|, with
such indiceg for which the numbers-j;, 1 <1 <n+m-2|y|, are not all different
the functionhy s disappears, while the functidm,¢ may not disappear. But even
the functionhy s disappears if some of the numbers in the &&f1,...,£jn_}
or in the se{+j,_|yj41,---, T insm-2)y} agree. This fact together with the iden-
tity hy, = hy ¢ and the relation between the functiomgs andhy ¢ (implied by the
definition of the functiorh,,; in formulas (5.5) and (5.6)) yield the identity

hy (X1, -+ Xnpm-2ly) = Nys (4, -+ Xnem—2)y) + Py, 7 (X - Xnsm-2)y))
with

hy7(xg,. .. 7Xn+m—2|y\)

hy(X1, .., Xrm-2)y)  if there existindiceg;, 1 <|[j| <N,
1<1 <n+m-2Jy| suchthat € 4;,, 1< <n+m-2y|,
all numbers= ji,...,+jn o, are different,
all numbers= j,_ 141, £inem-2)y are different,

and{ijlw--aijn—\y\} ﬂ{ijn—lyHl,---aijn+m—2\y\} #0
0 otherwise.

SinceZ) = (n+m-2|y|)!lg(hys), we have
(n+m—2ly)ts(hy) — = = (n+m—2ly)!ls(hy),

and
E(2) - (n+m=2ly)!g(hy))* < (n+m—2[y)![[hy7(-)|*

with the norm|[ - | in 2 ™2V,
On the other hand,

suplhy7(Xa, - -, Xnem-2y)| < suplhy(Xa, .., Xnim-21p)| < KiKoLM,
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with K1 = suplhy|, Ko = suplhy|, andL = G(A), whereAis a fixed cube containing
all Aj. Hence

E(=) — (n+m—2Jy))ls(hy))? < Ci|lhy 7>
<Y "G(4},) - G(dj,, 0y)
< CsupG(4j) <Ce, (5.10)
j

where the summatiofi” goes for such sequences. . ., jnim-2)y» 1< [ji| <N for
all 1 <I <n+m-2y|, for which all numberstjs,...,+j, |, are different, the
same relation holds for the elements of the sequenge; 1, .., = jnym-2)y, and

{ijlv--~a:|:jn—\y|}m{:|:jn—\y\+la---7ijn+m—2\y|} 7"é 0.

The constant€;, C, andC may depend on the functiorg, hy and spectral mea-
sureG, but they do not depend on the regular systgirhence in particular on the
parametet. In the verification of the last inequality in (5.10) we carpkit that
each term in the surly” is a product which contains a fact@®(4;)? < eG(4;).
Here an argument can be applied which is similar to the daipsiap in the proof of
Lemma 4.1, to the final argument in the proofSiftement B

Now we turn to the estimation & (Z))2. It can be expressed as a linear combi-
nation of terms of the form

S (ip:ke, ip ke p,pE{L,...,n}, i€ {1,...,m}) (5.11)

= E(( Zs(4j,) [ Ze(4k) ZG(AJE)J] ZG(AKF)>
peA, refy pPEAL ref

[ Z6(4j,)Z6(84) —E ] ZG(AJp)ZG(Akr)]
(p,r)eB (p.r)eB

Za(Ai - A _E 2 (A a” |
LJ;LB 6(4j5)Zc(Lx) (pJ:LB 6(4j;)Za( kr)])

Wherezg’ depends on such sequences of numlers;, jp, ki with indices 1<
p,p < nand 1< rr < mfor which jp, ki, jp ke € {£1,...,£N} for all indices
p.r,p andr, jp =k or jp = —k: if (p,r) € B, otherwise all numbers:jp, +k
are different, and the same relations hold for the indigeandkg if the indices
p andr are replaced by andr. Moreover, the absolute value of all coefficients
in this linear combination which depend on the functibasandh; is bounded by
suplhs (x)|?suplh(x)[2.

We want to show that for most sets of argumefijts ki, jz, kr) the expression
Z3V equals zero, and it is also small in the remaining cases.

Let us fix a sequence of argumeriis k;, jp, ke of Z%’, and let us estimate its
value with these arguments. Define the sets



58 5 The Proof of b's Formula: The Diagram Formula and Some of Its Consequences
A ={jp: peA}U{k: reP} and & ={jp: peA}U{k: reh}.

We claim thatZ%’ equals zero ife/ # —.of . .

In this case there exists an index </ such that-| ¢ <. Let us carry out the
multiplication in (5.11). Because of the independence ertig@s of random spectral
measures each product in this expression can be writteneagrdduct of inde-
pendent factors, and the independent factor containingetime Z;(4,) has zero
expectation. To see this observe that the Aetappears exactly once among the
arguments of the term&g(4;,) and Zg(4y ), and none of these terms contains
the argument-A; = A_,. Although —I ¢ <7, it may happen that € <7. In this
case the product under investigation contains the indegrerfelctorZg(4,)? with
EZs(A)2=0. If | ¢ <7, then there are two possibilities. Either this product con-
tains an independent factor of the foiZg(4)) with EZg(4,) = 0, or there is a
pair (p,r) € B such that(jg,kr) = (+I,+l1), and an independent factor of the form
Zg(4))Za(£A-)Za(£4) with the propertyEZg(A))Za(+A-1)Zs(+4)) = 0 ap-
pears. Hencg} = 0 also in this case.

Let _
7= U {ipk} and 7= J {(ipk}

(p.r)eB (Pr)eB

A factorization argument shows again that the expressi¢.irl) equals zero if the
sets# U(—%) and.Z U (—.%) are disjoint.

In the proof of this statement we can restrict ourselves ¢éoctise wheny =
—«7 . In this caset« is disjoint both of# U (—.%) and.% U (—.%), and the prod-

uct under investigation contains the independent factpy Zg(4j,)Zc(4x ) —
(p,r)eB
E M Zc(4j,)Zc(4x ) with expectation zero.
(p,r)eB

Finally in the remaining cases wheAU (—.%) and.% U (—.%) are not disjoint,
and.«Z = —.«/ the absolute value of the expression in (5.11) can be egdhietm
above by

Ce [ G(4),)G(A )G(Aj5)G(A) (5.12)

with a universal constai@ < c depending only on the parameterandm, where
the indicesjp, ki, jp, kr-are the same as in (5.11) with the following difference: All
indices appear in (5.12) with multiplicity 1, and if both indsl and—I are present
in (5.11), then one of them is omitted form (5.12). Moreo¥erall j, one of terms
G(A.j,) really appears in this product, and the analogous stateatemtolds for
all indicesk;, jyandkr. The multiplying terme appears in (5.12), since by carrying
out the multiplications in (5.11) and factorizing each teme get that all non-zero
terms have a factor either of the form

EZs(A)*Zo(—A)? = E(ReZg(A)? +1mZg(A)?)?
= EReZg(A)* + EImZg(A)* + 2EReZ(A)’EIMZs(A)? = 8G(A)?
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or of the form (E|ZG(A)|2)2 = G(4A)?, andG(A) < ¢ for all A € 2. (We did
not mention the possibility of an independent factor of toenf EZg(A)* or
EZs(A)%Zc(—A) with A € 2, because as some calculation shoBZEg(A)* = 0
andEZs(A)3Zg(—A) =0.)

Let us expres& (Z))? as the linear combination of the quantitiE}, and let us
bound each tern§3y in the above way. This supplies an upper boundEf@Ig')2 by
means of a sum of terms of the form (5.12). Moreover, someidereation shows
that each of these terms appears only with a multiplicitg Ea&nC(n,m) with an
appropriate constafi(n,m). Hence we can write

n+m

E(2))? < KZKZC(n,m)Ce

n

G(4j,) - G(4j),

r=1 jl,...,jr
where the indicegs, ..., jr € {£1,...,£N} in the sumy" are all different, and
Kj =suplhj(x)], j = 1,2. Hence

n+m

E(Z%/)Z <Cie Z G(A)r <Cye
=

with some appropriate constarg andC,. Because of the inequality (5.10), the
identity nllg(hy)mllg(hy) = 5 (5} + Z&) and the last relation the inequality
yer

2
E (n”G(hl)m”G(hz) - Z(n+m—2V)!|G(hy)>
s

2
—E (Z (2 +2)— (n+m—2]y))! 'G(hv))>
ye

<Gz < Z E((m+n—2y)ig(hy) — =)+ E(ZZV)2> < Cye
ye

holds. Sincee > 0 can be chosen arbitrarily small, Part B is proved in the ispec
casehy € ¢, ho € A2

If hy € ff_G” andh; € jf_Gm, then let us choose a sequence of functionsc ;fé‘
andhy € ﬁ’g‘ such thahy; — by andrlzﬁr — hy in the norm of the spaceﬁ{%"1 and
2" respectively. Define the functiorg(r) andhy(r) in the same way als,, but
substitute the pair of functiori$i1, hy) by (hyr, ho) and(hy ;. hy ) in their definition.
We shall show with the help of Part (A) that

Ellc(h)lc(h2) —lg(hyy)la(hzr)| — O,

and
Ellc(hy) —lg(hy(r))|—0 forallyerl
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asr — o. Then a simple limiting procedure shows that Theorem 5.8tr all
hy € ijn andh, € %m_
We have

Ellc(h)lg(h2) —Ig(hyr)la(hay)|
< E|(le(hy —hyr)la(he)| +E[lc(hyr)la(he —hay)|

1
< = (s = ha |12 a2 + g — el |2 el ) — 0.

and by Part (A) of Theorem 5.3

Ella(hy) —la(hy(r)| < Ella(hy) — la(hy(r))] +E[la(hy(r)) — Ia(hy(r))]
< [lhy — Ay (r)[1Y2 + || hy(r) — Ay (r)[|/?
< |lhy — P |[Y2 (e | Y2+ [[ha — o | 2] o [|Y2 — O.

Theorem 5.3 is proved. O

We formulate some consequences of Theorem 5.3[Letl” denote the set of
complete diagrams, i.e. let a diagrgma I" if an edge enters in each vertexyofwe
haveEl(hy) =0forallye ' \I", since (4.3) holds for alf € 778, n> 1. Ifye T,
thenl(hy) € 2. Leth, denote the value df(h,) in this case. Now we have the
following

Corollary 5.4. For all hy € #2%,..., y € 2™

Eny! |G(h1) cee nm!IG(hm) = Zhy.
yel

(The sum on the right-hand side equals zeio it empty.)

As a consequence of Corollary 5.4 we can calculate the exji@ctof products
of Wick polynomials of Gaussian random variables.

Let X j, EX; =0, 1<k <p, 1< j<ng be asequence of (jointly) Gaus-
sian random variables. We want to calculate the expectagevad the product
of the Wick polynomials Xc1---Xkn:,» 1< k< p, if we know all covariances
EXciXci=al(k j),(kJ)), 1<kk<p, 1<j<ng,1<j<n Forthis goal let
us consider the class of closed diagrafigs, ... ,kp), and define the following
quantity y(A) depending on the closed diagramand the sef of all covariances

Exk,JXEJ_: a((k’ J)’ (ka J))

o= ] a((k, i), (k). yer.
((kj).(k,j)) is an edge of

With the above notation we can formulate the following résul

Corollary 5.5. Let X j, EXj =0,1 <k < p,1 < j <ng, be a sequence of Gaussian
random variables. Let@k, j), (K, j)) = EX¢j X 1<k k <p,1<j<n,1<j<
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nk denote the covariances of these random variables. Therxffexted value of the
product of the Wick polynomiatsXy 1 --- X, : , 1 <k < p, can be expressed as

e (ﬁ XexXien ) - 3 A
k=1

yer (Ky,....Kp)

with the above defined quantitig6A). In the case whef (ky, ..., kp) is empty, e.g.
if kg 4 --- +kp is an odd number, the above expectation equals zero.

Remark.In the special case wheXc; = --- = X¢pn, = Xk, and E)<k2 =1 for all
indices 1< k < p Corollary 5.5 provides a formula for the expectation of the
product of Hermite polynomials of standard normal randomiades. In this case
we havea((k, j), (k, j)) = a(k,k) with a functiona(-,-) not depending on the ar-
gumentsj and j, and the left-hand side of the identity in Corollary 5.5 dqua
EHn, (X1) -~~an(Xp) with standard normal random variablXg, ..., X, with cor-

relationsE XX = a(k, k).

Proof of Corollary 5.5.We can represent the random variablgg in the form
Xej =3 ¢ j,pép With some appropriate coefficientg; ,, whereéy, &»,... is a se-
P

quence of independent standard normal random variabléZ (Iox) denote a ran-
dom spectral measure corresponding to the one-dimenspeatral measure with
density functiong(x) = %T for x| < m, andg(x) = O for |[x| > . The random in-
tegrals [ €P*Z(dx), p = 0,41,+2,..., are independent standard normal random
variables. Defindy j(x) = zck,j,peipx, k=1,...,p, 1< j < ng. The random vari-

p

ablesX, j can be identified with the random integrglsy j(x)Z(dx), k=1,...,p,
R n
1< j < ny, since their joint distributions coincide. P(X1, ..., X, ) = ﬁ hiej(X;)-
j=1
It follows from Theorem 4.7 that
: xk,l o 'xk,nk: = /ﬁk(Xl, s 7Xnk)z(dxl) o Z(dxnk) = nk“ (ﬁk(XL cee aXI’lk))
for all 1 <k < p. Hence an application of Corollary 5.4 yields Corollary.ZJme

only has to observe thaf’, h ; (X)h ;(x) dx=a((k, J), (k. })) forall k, k=1,...,p
and 1< j <n. m|

Theorem 5.3 states in particular that the product of Widb@rntegrals with
respect to a random spectral measure of a stationary Gaudsdds belongs to the
Hilbert spaces# defined by this field, since it can be written as a sum of Wiener—
Itd integrals. This means a trivial measurability conditiang also that the product
has a finite second moment, which is not so trivial. Theore3raBtually gives the
following non-trivial inequality. B

Leth; € ij”l,. . hme %”C_’“m. Let|I (n1,ng,...,Nnm,Nm)| denote the number of
complete diagrams ifi (N1, Ny, ..., Nm, Nm), and put
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|7 (n1,N1, ..., Nm,Nm)|
ny!- Nl '

C(nlv“'anm) -

In the special case; = --- = np=nletC(n,m) =C(ny,...,Nm). Then

Corollary 5.6.

E [(m!a())?- - (Nm!la(hm))?]
<C(ng,...,nm)E(nt!lg(h)?- - (nm!E (I (hm))?.

In particular,

E [(n!lg(h))®™] <C(n,m)(E(n!lg(h))®)™ if he L.

Corollary 5.6 follows immediately from Corollary 5.4 by dping it first for the
sequencéy, hy,...,hm, hy and then for the pain;, hj which yields that

E(njllc(h)?=nj!hj%, 1<j<m

One only has to observe thiit,| < ||y |?- - ||hm||? for all complete diagrams by
Part (A) of Theorem 5.3.

The inequality in Corollary 5.6 is sharp.®is a finite measure artg € Hgl,. .
hm € Hgm are constant functions, then equality can be written in Caamp5.6. We
remark that in this casks(hy),...,lc(hm) are constant times the-th,..., ny-th
Hermite polynomials of the same standard normal randonabbai Let us empha-
size that the constaft(ny,...,Nm) depends only on the parametess. . ., ny, and
not on the form of the functionsy, ..., hy. The functionC(ny, ..., ny) is monotone
in its arguments. The following argument shows that

C(ni+1,ny,...,nm) >C(Ng,...,Nm)

Let us call two complete diagrams In(ng, N1, ..., Nm,Nm) or in (N1 +1,n; +
1,...,nm, Nm) equivalent if they can be transformed into each other by péng the
vertices(1,1),...,(1,ng) in I (Ng,Nq,...,Nm,Nm) or the verticeg1,1),...,(1,n +
DinM(ni+21,n+1,....,nmnNm). The equivalence classes havg elements in
the first case andn; + 1)! elements in the second one. Moreover, the number of
equivalence classes is less in the first case than in the dewon (They would
agree if we counted only those equivalence classes in tiimd@ase which contain

a diagram wherél,n; + 1) and(2,ny,1) are connected by an edge. Hence

1
—IF(n,ng, ..o, 0N | < ————F (N +1.n1+1. ..., Nm, N,
n1!| (1a 1, s 1m, m)‘—(nl_’_l)l‘ (l"’ 3 1+ 3 s Him; m)|

as we claimed.
The next result may better illuminate the content of Corglia6.
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Corollary 5.7. Let &, .., & be a normal random vector, and 8, ...,X) a poly-
nomial of degree n. Then

E[P(&,..., &) <C(n,m)(n+1)™(EP(&,...,&)2)"
with the constan€(n, m) introduced before Corollary 5.6.

The multiplying constan€(n,m)(n+ 1)™ is not sharp in this case.

Proof of Corollary 5.7.We can write€j = [ f;(x)Z(dx) with somef; € 72, j =
1,2,...,k, whereZ(dx) is the same as in the proof of Corollary 5.5. There exist
someh; € ), j=0,1,...,n, such that

P(&1,...,&) = S if(hy).
1 k I;) j

Then

n

n 2m m
EP(&,.... &) =E ( in(h; ) < +1)'“E[ it h»))Z]
(&1, &) { J;J i) ] (n J;(J (h;

SOED™ Y Clpr, po)(EN0)?) P (En (B2 T
p1+-Tpn=m Pr!--- P!
m= 0 ,
= (nkaeim p1+..an:m(El(h0)2)p “'(El(n!hn)Z)p p1!--- pn!

m

= (n+2)"C(n.m) 3 E(H ()] "= (04 )"Cln.m) (EP(Er..... 60°)

O






Chapter 6
Subordinated Random Fields: Construction of
Self-similar Fields

Let X,, n € Z,, be a discrete stationary Gaussian random field with a nomiat
spectral measure, and let the random fi&Jdn € Z,, be subordinated to it. Ledg
denote the random spectral measure adapted to the randdiq fi@y Theorem 4.2
the random variabléy can be represented as

21
Co="To+ S — [ fk(Xe,.... %) Za(dxq). .. Za(dX
o=fo kzlk!/k(l )Za(dx) (dxc)

with an appropriatef = (fo, f1,...) € EXp4 in a unique way. This formula to-
gether with Theorem 4.4 yields the following

Theorem 6.1.A random fieldé,,, n € Z,,, subordinated to the stationary Gaussian
random field X, n € Z,, with non-atomic spectral measure can be written in the
form

b=Tfoty i / (Mt i (xq,. . X0 Z(dx) ... Z(dX), nEZy, (6.1)
k=1"

with some f= (fo, f1,...) € Exps#s, where % is the random spectral measure
adapted to the random field,XThis representation is unique. It is also clear that
formula (6.1) defines a subordinated field for alE fExp #¢.

Let G denote the spectral measure of the underlying stationans€kn random
field. If it has the property({x: xp=u})=0forallue Rt and 1< p < v, where
X = (X1,...,Xy) (this is a strengthened form of the non-atomic propertgpfthen
the functions

f_k(xla"'vxk) = fk(X]_,...,XI())?O_]'(X]_+”'+XK), k= 1,2,...,

are meaningful, as functions in the measure sg&@ke, 2%, GY), where§n(x) =

. v eix(P)71 . AT .
gnx NS ne Zy, denotes the Fourier transform of the indicator function
=0

65
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\%
of the v-dimensional unit cubg] [n(P),n(P) + 1]. Then the random variabl§, in
p=1
formula (6.1) can be rewritten in the form

[oe] 1 N _
E= ot Y i [ Fabat x0T, XIZa(d) . Za(dx), nE 2y,
k=1"

(6.2)
Hence the following Theorem 8 can be considered as the continuous time version
of Theorem 6.1.

Theorem 6.1'. Let a generalized random fielfl(¢), ¢ € ., be subordinated to
a stationary Gaussian generalized random fielhX ¢ € .. Let G denote the
spectral measure of the field(¥), and let Z be the random spectral measure
adapted to it. Let the spectral measure G be non-atomic. Elign can be written
in the form

E0) =10 9O+ Y & [F0ut 0 0Zo(d) . Zo(dK),
k=1"

(6.3)
where the functionsyfare invariant under all permutations of their variables,

fk(-Xl,...,—Xk):fk(X]_,...,Xk), k:lvza"'7

and
=1
2 g/(1+|X1+---+Xk|2)"’|fk(xl+--~+xk)\ZG(dx1)...G(dxk) <o (6.4)
k=1"

with an appropriate number p 0. This representation is unique.
Contrariwise, all random field§(¢), ¢ € .7, defined by formulas (6.3) and (6.4)
are subordinated to the stationary, Gaussian random figlg )X¢ < ..

Proof of Theorem 6/1The proof is based on the same ideas as the proof of The-
orem 6.1. But here we also adapt some arguments from theytbégeneralized
functions (see [16]). In particular, we exploit the follew continuity property of
generalized random fields and subordinated generalizeldnafields. Ifg, — ¢ in
the topology of the Schwartz spacé, andX(¢), ¢ € .7, is a generalized random
field, thenX(¢n) = X(¢) stochastically. IX(¢), ¢ € .7, is a generalized Gaussian
random field, then also the relati@iX (¢n) — X(¢)]2 — 0 holds in this case. Simi-
larly, if £(¢), ¢ €., is asubordinated generalized random field, éne- ¢, then
E[&(¢n) — &()]2 — O by the definition of subordinated fields.

It can be seen with some work that a random figld), ¢ € .7, defined by (6.3)
and (6.4) is subordinated %(¢). One has to check that the definition&f¢) in
formula (6.3) is meaningful for ap € ., because of (6.4%(Ti¢) = & (¢) for all
shifts T, t € R, by Theorem 4.4, and also the following continuity propérojds.
For alle > 0 there is a small neighbourhoétlof the origin in the space” such that

if ¢ =d1— @2 € H for somegy, ¢, € .7 thenE[E (¢1) — E(d2)]2 = EE(9)? < €2.
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Since the Fourier transform(-) — ¢(-) is a bicontinuous map i, to prove
the above continuity property it is enough to check &t¢)? < 2 if § € H for
an appropriate small neighbourhobidof the origin in.”. But this relation holds
with the choiceH = {¢: (1+ [x|?)P|p(x)| < i—z for all x € RV} with a sufficiently
largeK > 0 because of condition (6.4).

To prove that all subordinated fields have the above reptaisem observe that
the relation

E6) = %o+ 3 o [Yorta X0Zo(da)  Zo(dx) (69
k=1""

holds for allg € .7 with some(¥ 0, % 1,...) € Exp# depending on the func-
tion ¢. We are going to show that these functidks, can be given in the form

q—’¢7k(X1,...7Xk) = fk(Xl,...7Xk)-¢(X1+--~+Xk), k=1,2...,
with some functiondy € %, and
%,0=fo-$(0)

for all ¢ € . with a sequence of functiorfg, f1,... not depending om.

To show this let us choose @ € .7 such thatdo(x) > 0 for all x e R. (We
can make for instance the choigg(x) = e *¥.) We claim that the finite linear
combinationsy apgo(x —tp) = ¥ apTi,Po(x) are dense in”. To prove this it is
enough to show that if the Fourier transfofrof a functiony € . has a compact
support, then in every open neighbourhood/ofin the topology of the space”)
there is a function of the forny a,¢o(X —tp). Indeed, this implies that the above
introduced linear combinations constitute a dense subolag’, since the functions
Y with the above property are dense.ifi. (The statement that these functions
g are dense in7 is equivalent to the statement that their Fourier transgofm
are dense in the spac& c .¢ consisting of the Fourier transforms of the (real
valued) functions in the spac#.) We haveg'a € ¢ for such functiongp, where
¢ denotes the Schwartz-space of complex valued, at infiniongty decreasing,
smooth functions again, becau@g(x) # 0, and§/ has a compact support. There
exists a functiory € . such thaty = Zt% (Here we exploit that the space of Fourier
transforms of the functions froox’ agrees with the space of those functidns.°
for which f(—x) = f(x).) Thereforey(x) = x x ¢o(X) = [ x(t)Po(x —t)dt, where
x denotes convolution. It can be seen by exploiting this i@latogether with the
rapid decrease gf and¢g together of its derivatives at infinity, and approximating
the integral defining the convolution by an appropriatedisiim that for all integers
r >0,s> 0 and real numbers > 0 there exists a finite linear combinatidrix) =
Urse(X) = S apPo(x—tp) such that(1+ [x|%)|y(x) — P(x)| < € for all x e RV, and

p

the same estimate holds for all derivatives/dk) — ((x) of order less than.
| only briefly explain why such an approximation exists. Sorak&ulation en-
ables us to reduce this statement to the case wihery x ¢ with a functiony € 2,
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which has compact support. To give the desired approximatimose a small num-
ber & > 0, introduce the cubd = A(d) =[-9,0)" C R and define the vectors
k(d) = (2ki9,...,2ky0) € RV for all k= (k,...,ky) € Z,. Given a fixed vector
x € R” let us define the vectar(x) € R’ for all u € RV asu(x) = x+ k(d) with that
vectork € Z, for which x+Kk(d) —u € A, and putgox(u) = ¢o(u(x)). It can be
seen thatl(x) = x * ¢ox(x) is a finite linear combination of numbers of the form
Po(x—tx) (with tx = k(d)) with coefficients not depending oaMoreover, ifd > 0

is chosen sufficiently small (depending os ande), then(x) = g s¢(x) has all
properties we demanded.

The above argument implies that there is a sequence of unsafi; s which
converges to the functiog in the topology of the space’. As a consequence, the
finite linear combination§ ap@o(Xx —tp) are dense i”.

Define

. W¢o7k(X1, . ,Xk)

)
- . k=1,2,..., andfg= 20
Po(Xg + -+ + %)

$o(0)

If ¢(X) =Y apdo(X—1tp) = 3 apTi,Po(x), and the sum defining is finite, then by
Theorem 4.4

fie (X1, ..., %)

E(d)) — (z ap) fO"ﬁO(O)"‘ i %/Zapei(tp,X1+...+Xk)¢o(Xl+..._|_Xk)
k=1" p
(X, %) Za(d%) - Za(dX)
0RO+ T [ 000 b X2 Zo{ ).

Relation (6.5) holds for alp € .7, and there exists a sequence of functigns) =
zag)%(x—t,()”) € .7 satisfying (6.3) such thaft; — ¢ in the topology of¥. This
p

implies that limE & (¢;) — &(¢)]2 — 0, and in particulaElg (W x — $j kf)> — 0
with @ k(X1,... . %) = @j(xa+---+Xc) asj — o for all k=1,2,.... In the sub-
sequent steps of the proof we restrict the domain of integrdb bounded set8,
because this enables us to carry out some limiting procecheeded in our argu-
ment. We can write that

A|w¢,k(xl7~~-;xk) — (X2t %) (X, -, %) [PG(dxg) ... G(dX) — O
asj — oo for all k and for all bounded se#s € R<. On the other hand,
/A|¢(x1+~~-+xk) — B0t %) 2 fix, - %) 2G(dx) - G(dlxe) — O,
sinced;(x) — ¢ (x) — 0 in the supremum norm @#; — ¢ in the topology of#’, and
the propertydo(x) > 0 (of the functiondy appearing in the definition of the function

fi) together with the continuity offp and the inequalitflg(dok fk)? < o imply
that [, | fk(X1,- -, %)[2G(dx1) ... G(dx) < o« on all bounded setd. The last two
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relations yield that
Wo (X1, %) = @(Xe + -+ %) f(xe, ..., x), k=1,2,...,

since both sides of this identity is the limit of the sequence

Pj(xa+- - +x0) fe(Xe, ... %), 1=1,2,...

in the Lék norm, whereGY denotes the restriction of the meas@eto the set.
A
Similarly,
Wy0=¢(0)fo.

These relations imply (6.3).

To complete the proof of Theorem16 we show that (6.4) follows from the
continuity of the transformatiofr: ¢ — &(¢) from the space¥ into the space
Lo(Q,7,P).

We recall that the transformatiop — ¢ is bicontinuous in¢. Hence for a
subordinated fiel (¢), ¢ € .7, the transformatiorp — &(¢) is a continuous
map from the space of the Fourier transforms of the functinrtbe space¥” to
L2(Q, <7, P). This continuity implies that there exist some integers O,r > 0 and
real numbeid > 0 such that if

2yp| O 5 forall

thenEE(¢)2 < 1.

Let us choose a functiog € . such thaty has a compact suppomy(x) =
Y(—x), Y(x) > 0forallxe RV, andy(x) = 1if |x| < 1. (There exist such functions.)
Define the functiongm(x) = C(1+ [x|?)~Py(2). Thengm € ., since its Fourier
transformgy, is an even function, and it is in the spagé being an infinite many
times differentiable function with compact support. Moren ¢, satisfies (6.6) for
allm=1,2,... ifthe numbelC > 0 in its definition is chosen sufficiently small. This
numberC can be chosen independentlyrof (To see this observe thét + [x?|)~P
together with all of its derivatives of order not bigger thacan be bounded by

% with an appropriate consta@{p,r).) Hence

E&(¢m)* = zk—l!/|(75m(xl+---+xk)|2|fk(X1,~-' X)[2G(dx) ... G(dx) < 1
forallm=12,....

AS $m(x) — C(|1+ |x|?)~P asm — oo, andi(x) > 0, anm — oo limiting proce-
dure in the last relation together with Fatou’s lemma implgtt

c % /(1+ X1+ 4%)[2) P f(Xa, -+ %) PG (dx) ... Gdx) < 1.

Theorem 61’ is proved. O
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We shall call the representations given in Theorems 6.1 atdt& canonical
representation of a subordinated field. From now on we otstirselves to the case
Eé, =0 orE&(¢) = O respectively, i.e. to the case whén= 0 in the canonical
representation. If

© 1
= - f . dsa) dxo).
k; K /¢(X1+ +X) fi(Xa, -, X%) Za (A1) - .- Za (dX)

then

iletv Gt(xe+--+x)) fe(Xe, ..., X)Za(dx1) ... Za(dx)

with the functiong{ defined in (1.3). Define the spectral meas@eby the formula
Gt(A) = G(tA). Then we have by Lemma 4.6

1t

zklA /¢X1+ +Xk)fk( %)Zet(dxl)...zet(dxk).

If G(tB) =t2G(B) with somex > Oforallt >0andB € %", fx(Axy,...,AX) =
AVTKK=Of (xq, ..., %), andA(t) is chosen af\(t) =t7, then Theorem 4.5 (with the

choiceG'(B) = G(tB) = t2¢G(B)) implies thaté ($) 2 & (¢). Hence we obtain the
following

Theorem 6.2.Let a generalized random fiefl ¢ ) be given by the formula
1
=3 o ] Bt T ) Za(d) - Zo(dX). (6.7)
k=1

If fi(AXg, .., AX) = AV KK i (xq,..., %) for all K, (X, ..., %) € RV andA >0,
G(AA) = A?XG(A) for all A > 0and Ac 2", thené is a self-similar random field
with parameter.

The discrete time version of this result can be proved in #mesway. It states
the following

Theorem 6.2. If a discrete random field,, n € Z,, has the form

zn— /X (%4 4 %) Fe(Xas - %) Z6(d%) ... Z6(d%),  NE Zu, (6.8)

L
K

IIM8

and f(Axq,...,Ax) = AV KK R (xq,..., %) for all k, G(AA) = A?XG(A), thené&,
is a self-similar random field with parametar.

Theorems 6.2 and.B enable us to construct self-similar random fields. Never-
theless, we have to check whether formulas (6.7) and (6e8haaningful. The hard
part of this problem is to check whether
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Zk%/b?n(h-&---~+Xk)\2\fk(xl,...,Xk)|zG(dx1)...G(dxk) <o

in the discrete time case or whether
1
zE/|¢(x1+~--+xk)|2|fk(xb...,xk)\zG(dxl)...G(d>q<) <o forallpc.s

in the generalized field case.

It is rather hard to decide in the general case when thesessipns are finite.
The next result enables us to prove the finiteness of thesessipns in some inter-
esting cases.

Let us define the measué

G(A):/AXZKVa(|§|> dx  Ac 2", (6.9)

wherea(-) is a non-negative, measurable and even function orvitienensional
unit sphereS,_1, andk > 0. (The conditionk > 0 is imposed to guarantee the
relationG(A) < o for all bounded seté € %Y.) We prove the following

Proposition 6.3.Let the measure G be defined in formula (6.9).

(@) Ifthe function &) is bounded on the unit spherg_§, and { > 2« > 0, then

D(n) :/|)”(n(x1+--~+xk)\zG(dx1)...G(d><k) <o forall nez,
and
D(9) = [ 180+ +%0°6(dx) ... G(dx)
gC/(l+\x1+---+xk)|2)’pG(dx1)...G(dxk) <o
forall ¢ € . and p> % with some C=C(¢, p) < .
(b) Ifthere is a constant G 0 such that &x) > C in a neighbourhood of a point
Xo € Sy_1, and either2k <0 or 2k > { then the integrals Dn) are divergent,

and the same relation holds for((p) with somep € ..

Proof of Proposition 6.3. Proof of Part (a).
We may assume thatfx) = 1 for allx € S,_1. Define

JK,k(X):/X+ » X|X1|2K_"~~\Xklz"“’dxl...dxk, xeRY,
N

for k > 2, wheredx; ... dx denotes the Lebesgue measure on the hyperpglane
X = X, and letd, 1(X) = [x|?~V. We have

JK,k(A X) _ |)\ |k(2K7v)+(k71)vJK7k(X),: M |2kKivJK,k(X)7 XER A > 07
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because of the homogeneity of the integral. We can writeaumsz of (6.9) with
ax)=1

D(n) — /R [0 ()| 2 (X) A (6.10)

and

D(9) = [, 1800hikx
We prove by induction ok that
Jek(X) < C(k, k) |x>kv (6.11)

with an appropriate consta@{k,k) < « if { > 2k > 0.
Inequality (6.11) holds fok = 1, and we have

30 = [ sy ey ey
for k > 2. Hence

Jek(X) < C(k,k—1) / | @KV yize-v gy

X 2K—V
-yl dy=C(k, k)|,

ZC(K,k—1)|X|2Kk7V/M<2K(k71)7v |X| _

2K—V

since [ |y|(2x(k-1)-v “—ﬁ‘ —y‘ dy < co.

The last integral is finite, since its integrand behaves ab zsymptotically
asCly|>k-D-v at the pointe = € S-1asCly— €%~V and at infinity as

Cs|y|?*~2v_ Relations (6.10) and (6.11) imply that

v
1
<c ~ 21u12kk—v < /// 2kk—v -
D(n) < C' [ 1o P Vax<c” [ Mo

< C//// |X(l)|2Kk—V . 1 dx
= ‘X(1)|:1T|%|X(l‘ IIJ 14 |x1)2

0
— C//// I///
pZO XM= max x|, 2P<|x(D) | <2P+1 [xD]= max [x!,[xD|<1
1<I<v 1<I<v

The second term in the last sum can be simply bounded by aattinsinceB =
Vv

< x(@D)] = (I (1) . < (Vykk—v @ 1

x: x| = max x|, ¥ < 1} C{x: X < VL andx O P 1 s <

const|x|k~V on the seB. Hence

0o w 1 v
< p(2kk—v) / )
D(n)_C]_F;Z . 1+X2dX +Cr <o
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We have|¢ (x)| < C(1+ [x?|)~P with someC > 0 andD > 0 if ¢ € .7. The proof
of the estimat®(¢) < « for ¢ € . is similar but simpler.

Proof of Part (b).Define, similarly to the functiod, i the function
X X

|x1|2K"a<1> -~~|xk|2K"a<k> dx...dx, XeRY,
x4 Xl

for k > 2, wheredy; ... dx denotes the Lebesgue measure on the hyperplghe
-+ Xe =X, and putly 5(X) = xz"“’a(ﬁ). We can prove by induction with respect
to k that

X—y 2K—V
J.k,xz/ J,k,ya( )X—y dy
ekea*) V. (d-ax<lyl<(Gra)x raV)a{ oy x=y

> C(K,k,a(.))/ Ix(2elD—v iz gy

y: (z-a)X<lyi<(z+a)lx]

Ji ka(X) = /

J Xyt X=X

with the choice of some number0a < % and

X_
JK,k,a(X) > / JK,k—l,a(Y)&( y ) |X_y‘2K—V dy
y: Iy>2x X—y]
> C(k,k,a(")) / X y|2k-2v gy
Jy: ly[>2x

with some coefficien€(k,k,a(-)) if |—§‘ is close to such a poiny € S,_1 in whose
small neighbourhood the functia-) is separated from zero. Hence by an argument

similar to the one in Part (a) we get the inequality

> C(K,K)[xZk=Vif ¥ > 2k >0,
‘]K*k*a(x){oo if Kk <Oor2x >y

for such vectors € R”.
Since|n(x)|? > 0 for almost allx € R,

D(n) :/‘Xn(XHZJK,k,a(X)dX:w

under the conditions of Part (b). Similaf}(¢) = o if |§(x)|? > 0 for almost all
x € RY. We remark that the conditions in Part (b) can be weakenedould have
been enough to assume tléx) > 0 on a set of positive Lebesgue measursg,in;.
O

Theorem 6.2 and.& together with Proposition 6.3 have the following

Corollary 6.4. The formulae
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&= i [Tt %0 lﬁ(w”““”“-bk (ﬁh))

Zg(dxy) ... Zg(dx), neZy,

and

oo o )

=1

Zo(dx)...Zo(dX), @ €7,

define self-similar random fields with self-similarity paratera if G is defined by
formula (6.9), the parameter satisfies the inequality < a < v, and the functions
a(+) (in the definition of the measure(Gin (6.9)) and l(-).. .., k(-) are bounded
even functions on,S;.

The following observation may be useful in the proof of Ctanl 6.4. We can
replaceé, by another random field with the same distribution. Thus wewate,
by exploiting Theorem 4.5,

)? X1+ +X)Zg (dX1) ... Zg(d%), NEZy,

I\q
sz

with a random spectral measutg corresponding to the spectral meas@fedx) =
b( )% x| 22 /kG(dx) = a()b(f)%x| VT2V @)/kdx. In the case of gener-
ahzed random fields a similar argument can be applied.

Remark 6.5The estimate od, x and the end of the of Part (a) in Proposition 6.3
show that the self-similar random field

u X1+ X
_ e [Py X
$(¢) k;/fﬁ(xwr + X)X+ X u( >

Xe+ - X
k

Il <x| |y (|)>:>) Zo(dx)... Zo(dx%), ¢ €7,

and

M ...
I— Z/)?n(xl+"'+xk)|xl+"'+xkpU(Mk>
k=1

X+ X
k

X
|‘l (|x| |KFv=a)/k <|X:|)> Zo(dx)...Za(dx), neZy,
|=

are well defined ifG is defined by formula (6.9)%(-), b(-) andu(-) are bounded
even functions o8, 1, 5 < a < v, anda — p < v in the generalized ané%l <
o — p < v is the discrete random field case. The self-similarity patemof these
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random fields isx — p. We remark that in the cage> 0 this class of self-similar
fields also contains self-similar fields with self-simitgrparameter less tha.

In proving the statement of Remark 6.5 we have to check thegiability
conditions needed for the existence of the Wienériitegralsé (¢) and &,. To
check them it is worth remarking that in the proof of Part (BPooposition 6.3
we proved the estimatd (x) < C(k,Kk)|x|>~V. We want to apply this inequal-
ity in the present case with the choige= “72. Then arguing similarly to the
proof of Part (a) of Proposition 6.3 we get to the problem \Wwkethe relations
[ 1Xn(¥)|2[x[2PH2V=0)-Vdx < oo and [ | (x)|?|x[2PT2V-O)Vdx < w if ¢ €.7 hold
under the conditions of Remark 6.5. They can be proved by mefihe argument
applied at the end of the proof of Part (a) of Proposition 6.3.

The following question arises in a natural way. When do déférformulas
satisfying the conditions of Theorem 6.2 or Theorer® @lefine self-similar ran-
dom fields with different distributions? In particular: Atiee self-similar random
fields constructed via multiple Wienerélintegrals of ordek > 2 necessarily non-
Gaussian? We cannot give a completely satisfactory answénd above question,
but our former results yield some useful information.

Let us substitute the spectral meas@eby G' such that% = |g?(x)|?,

9(—x) = g(x) and the functiongx |~ *+(V~)/Xb( ) by b( g )g(x )| |~V )/

in Corollary 6.4. By Theorem 4.4 the new field has the sameibligion as the
original one. On the other hand, Corollary 5.4 may helps wetide whether two
random variables have different moments, and therefoferdiit distributions. Let
us consider e.g. a moment of odd order of the random varighlesé (¢) defined
in Corollary 6.4. It is clear that alh, > 0. Moreover, ifby(x) does not vanish for
some even numbdys, then there exists la, > 0 in the sum expressing an odd mo-
ment ofé, or £(¢). Hence the odd moments &f or £(¢) are positive in this case.
This means in particular that the self-similar random fieldBned in Corollary 6.4
are non-Gaussian I is non-vanishing for some evénThe next result shows that
the tail behaviour of multiple Wiener-8tintegrals of different order is different.

Theorem 6.6.Let G be a non-atomic spectral measure argdarandom spectral
measure corresponding to G. For alkhz" there exist some constants K K, >
0 and % > 0 depending on the function h such that

e K™ < p(|Ig(h)] > x) < e K™

for all X > Xg.

Remark.As the proof of Theorem 6.6 shows the constiptin the upper bound

of the above estimate can be choselKgs= Cm(EIG(h)z)‘l/ M with a constan€,
depending only on the ordem of the Wiener—Id integral oflg(h). This means
that for a fixed numbem the constanKs, in the above estimate can be chosen as
a constant depending only on the variance of the randomblarig(h). On the
other hand, no simple characterization of the condant 0 appearing in the lower
bound of this estimate is known.
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Proof of Theorem 6.6. (a) Proof of the upper estimate.
We have
P(lla(h)| > x) <x*"E(Ie(h)™").

By Corollary 5.6

E(le()™) < C(mN)[E(ls()?)N < C(mN)CY'
with the coefficienC(m,N) appearing in this result, and by a simple combinatorial
argument we obtain that

= 2Nm—1)(2Nm—-3)---1
Clm) < CRm=E=

since the numerator on the right-hand side of this inequeliuals the number of

complete diagram§™ (m,...,m)| if vertices from the same row can also be con-
N——

. . 2Ntimes
nected. Multiplying the inequalities

(2nM —2j —1)(2Nm—2j —1—2N)---(2Nm—2j —1—2N(m—1)) < (2N)mm!,
j=1,...,N, we obtain that
C(mN) < (2N)™N,

(This inequality could be sharpened, but it is sufficientdar purpose.) Choose a
sufficiently small numbea > 0, and define\ = [ax?/™], where[-] denotes integer
part. With this choice we have

P(llg(h)] > x) < (x2(2a)™)NCY = [Cy(2a)MN < e K2,
if a is chosen in such a way th@g(2a)™ < , K, = 4, andx > xo with an appro-
priatexy > 0.

(b) Proof of the lower estimate.

First we reduce this inequality to the following statemergt Q(x,...,Xk)
be a homogeneous polynomial of order(the numberk is arbitrary), andé =
(é1,...,&) ak-dimensional standard normal variable. Then

PQ&L, ..., &) > x) > e " (6.12)

if X > Xo, where the constants > 0 andxp > 0 may depend on the polynomial
By the results of Chapter 4 (h) can be written in the form

Io(h) = C N Hj, (&) - Hi (&), (6.13)

J25ees
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whereéy, &, ... are independent standard normal random variabf%s_‘,":jl are ap-
propriate coefficients, and the right-hand side of (6.18bisvergent irL, sense. Let
us fix a sufficiently large integes, and let us consider the conditional distribution
of the right-hand side of (6.13) under the conditién1 = X1 1, Ekiz = Xki2,-- -,
where the numbers. 1,Xc2,... are arbitrary. This conditional distribution coin-
cides with the distribution of the random varial®déé, . . ., &, Xki1, Xkr2, - - - ) With
probability 1, where the polynomidD is obtained by substitutingy 1 = Xx1,

&ki2 = Xk=2, ... into the right-hand side of (6.13). In particular,

Q(Elv LR Ekaxk-‘rlaxk-'rZa ce )

is a random polynomial with finite second moment, and as aszprence with finite
coefficients for almost all vectofy. 1, Xk 2, - - - ) With respect to the distribution of
the vecton(&x.1, k12, ... ). Itis clear that all these polynomials

Q(Elv ey Eka XkJrla Xk+2a s )
are of ordemiif k is sufficiently large. It is sufficient to prove that

7KX2/m

P(|Q(Elv"'7Ekaxk+laxk+23"')| > X) 2 e

for x > Xp, where the constants > 0 andxy > 0 may depend on the polynomial
Write

Q(&1,- s €k Xt 1. Xk 2, -+ - ) = Q(€1,. -, &) +Q2(é1, .-, &k)

whereQ; is a homogeneous polynomial of order andQ, is a polynomial of
order less tham. The polynomialQ, can be rewritten as the sum of finitely many
Wiener—I6 integrals with multiplicity less tham. Hence the already proved part of
Theorem 6.6 implies that

P(QZ(E]_, R Ek) > X) S e—qKXZ/(m—l) .

(We may assume that > 2). Then an application of relation (6.12) @ implies
the remaining part of Theorem 6.6, thus it suffices to prové2p

If Q(+) is a polynomial ofk variables, then there exist sorae> 0 andf3 > 0

such that
X1 Xk
A (‘Q(,,)‘ >a> > B,
x| x|

k
where|x|2= 3 %2, andA denotes the Lebesgue measure orktdémensional unit
=1

sphereS,_1. Exploiting that|£| andlg—‘ are independen% is uniformly distributed

on the unit spher&_, andP(|&| > x) > ce ¥ for ak-dimensional standard normal
random variable, we obtain that

P(IQ(&1,..., &) >X) > BP(|E|”‘ S g) el
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if the constant¥ andx are sufficiently large. Theorem 6.6 is proved. O

Theorem 6.6 implies in particular that Wiene-tegrals of different multiplic-
ity have different distributions. A bounded random var@fleasurable with respect
to theo-algebra generated by a stationary Gaussian field can bessqat as a sum
of multiple Wiener—Id integrals. Another consequence of Theorem 6.6 is the fact
that the number of terms in this sum must be infinite.

In Theorems 6.2 and.B we have defined a large class of self-similar fields. The
question arises whether this class contains self-simatdisuch that the distribu-
tions of their random variables tend to one (or zero) at itfifat minus infinity)
much faster than the normal distribution functions do. Tqusstion has been un-
solved by now. By Theorem 6.6 such fields, if any, must be esgm@ as a sum of
infinitely many Wiener—ib integrals. The above question is of much greater impor-
tance than it may seem at first instant. Some consideratigggest that in some
important models of statistical physics self-similar feeldith very fast decreasing
tail distributions appear as limit, when the so-called remaization group transfor-
mations are applied for the probability measure descriltiregstate of the model
at critical temperature. (The renormalization group tfammations are the transfor-
mations over the distribution of stationary fields inducgddrmula (1.1) or (1.3),
when Ay = N%, A(t) = t9 with somea.) No rigorous proof about the existence
of such self-similar fields is known yet. Thus the real prableehind the above
guestion is whether the self-similar fields interestingdtatistical physics can be
constructed via multiple Wieneréintegrals.



Chapter 7
On the Original Wiener-It 6 Integral

In this chapter the definition of the original WieneB-integral introduced by &
in [19] is explained. As the arguments are very similar tasthof Chapters 4 and 5
(only the notations become simpler) most proofs will be ¢exit

Let a measure spa¢hl,.#, i) with a o-finite measuret be given. Lefu satisfy
the following continuity property: For ab > 0 andA € .Z, u(A) < o, there exist
some disjoint setBj € .7, j =1,...,N, with some integeN such thatu(B;) < €

N
forall1< j <N, andA= |J Bj. We introduce the following definition.

j=1
Definition of (Gaussian) Random Orthogonal MeasuresA system of random
variables Z,(A), Ac ., u(A) < », is called a Gaussian random orthogonal mea-
sure corresponding to the measyref

(i) Zu(A1),...,Zu(Ac) are independent Gaussian random variables if the sets
Aj e A, U(Aj) <o, j=1,... .k, are disjoint.
(i) EZu(A)=0,EZi(A2 = u(A).

k K
iy zy (_UlAj> = _leu (Ax) with probability 1 if A, ..., A are disjoint sets.
i= j=

Remark.There is the following equivalent version for the definitiohrandom or-
thogonal measures: The system of random variables systeamdbm variables
Zy(A), Ae A, u(A) < », is a Gaussian random orthogonal measure correspond-
ing to the measurg if

(i) Zu(A1),...,Zu(Ay) are (jointly) Gaussian random variables for all s&s=
M, (A <o, j=1,... .k

(i) EZu(A)=0,andEZ,(A)Zy(B) = u(ANB)if A Be ., u(A) <, u(B) <
0,

Itis not difficult to see that properties (i), (ii) and (iiniply relations (i) and (if).
On the other hand, it is clear thaf)@nd (i) imply (i) and (ii). To see that they also
imply relation (iii) observe that under these conditions

79
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if A1,...,Ax are disjoint sets.

The second characterization of random orthogonal measuagshelp to show
that for any measure spa¢M,.#, 1) with a o-finite measureu there exists a
Gaussian random orthogonal measure corresponding to thsumgg:. The main
point in checking this statement is the proof that for anys gat...,Ax € .Z,
H(A)) <o, 1< j <Kk there exists a Gaussian random ve¢iy (A1), ..., Zu(Ax)),
EZ,(A;j) =0, with correlationEZ, (A)Zu (Aj) = (A NA;) forall 1 <i,j <k To
prove this we have to show that the corresponding covariaratex is really posi-
tive definite, i.ey ¢icju(AiNA;) > 0 for an arbitrary vectofcy, . . ., ). But this fol-

N

2
Iowsfromtheobservatloﬂc.cij,mA]() ZC.CJXA,( X) Xa; (X) XC|XA. )’ >0

for all x e M, if we mtegrate this mequallty with respect to the measuri@ the
spaceM.

We define the real Hilbert spac@éjr‘, n=12,.... The space%/;” consists of
the real-valued measurable functions ofdrx --- x M, # x --- x .Z) such that

ntimes ntimes

1912 = [ 150, ) u(dx) ... p(dx) < o

and the last formula defines the norm)ti”. Let.#, denote the subspace in{‘
consisting of the function$ € ., such that

f(X]_,...,Xn) = f<XIT(1)a"'7XT[(n)) for all e I,

Let the spaces%/;0 and %o consist of the real constants with the noffigj| = |c|.
Finally we define the Fock space Exf) which consists of the sequencés=
(fo, f1,...), fn€ £, n=0,1,2,..., such that

21
1117 = Zﬁllfnll2 <.
n=o0""

Given a random orthogonal measuigcorresponding tq, let us introduce the
o-algebraZ = o(Z,(A): Ae ., u(A) <x). Let.# denote the real Hilbert space
of square integrable random variables measurable wittect$p theo-algebra? .

Let 7~ denote the subspace.&f that is the closure of the linear space containing
the polynomials of the random variabl&g(A) of order less than or equal to

Let %, be the orthogonal completion o¥~,,_1 to J#<n. (The norm is defined as
|€||? = EE? in these Hilbert spaces.)

The multiple Wiener—h integrals with respect to the random orthogonal measure
Z,, to be defined below, give a unitary transformation from E#pto 7. We
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shall denote these integrals If{to distinguish them from the Wiener8lintegrals
defined in Chapter 4.

First we define the class of simple functio!%” C %;“. Afunctionf € %;“ isin

jZ,” if there exists a finite system of disjoint séts, ..., An, with Aj € .7, u(4;) <
o, j=1,...,N, such thatf (x1,...,%n) is constant on the sef§, x --- x A, if the

indicesji, ..., jn are disjoint, andf (x1,...,X,) equals zero outside these sets. We
define
-/
/ Fxes ) Zu(dxa) - Zu(dx) = 5 F(Xjpse o0 XG0)Zu(B)y) - Zu(4j)

for f € %j{‘, wherexx € Ax, k=1,...,N. Here again, it can be seen with the help
of the additivity property (iii) of the random orthogonal asireZ,, that the above
definition of the Wiener—& integral of simple functions is meaningful, although
the simple functionf does not determine uniquely the sésappearing in this
definition.

Let ,/{“ ,%/“ N,. The random variables

1 o/ a
|L(f):ﬁ/ F(0, - X0 Zya () - Z (), € A,
have zero expectation, integrals of different order areagtnal,

IL(f)=1,(Symf), and Synf € 2 if f e 7,

1 . a
EIL(f)ZSHHfHZ if fe.z), (7.2)

and (7.1) holds with equality if € Ji}u”.

It can be seen thal?fun is dense in%f;” in theLo(4"™) norm. (This is a statement
analogous to Lemma 4.1, but its proof is simpler.) Henceimlg7.1) enables us
to extend the definition of the-fold Wiener—I0 integrals over’,;". All the above

mentioned relations remain valid ffe jﬂ‘ is substituted byf € J{;”, andf e Ji}u”

is substituted byf € 7. We formulate 1&'s formula for these integrals. It can be
proved similarly to Theorem 4.3 with the help of the diagrammifula valid for the
classical Wiener—t integrals studied in this chapter.

Theorem 7.1. (I0's Formula.) Let ¢1,...,¢m, ¢ € Jiful forall 1< j<m, be

an orthonormal system inf}. Let some positive integers,j.., jm be given, put
ji+ -+ jm=N, and define forall = 1,...,N

=¢.forl<i<j;, and g=¢s forji+---+js1<i<ji+---+js

Then
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i ([ 0200200 ) ([ gm0z
= [ 010+ 0n00) 2 () .2, ()

= [ Symigu(x) -+ gu0a)] Zuldx) . Zu (i)

(Let me remark that the diagram formula (Theorem 5.3) alswaias valid for
this integral if we replace-x; is by xj andG(dx;) by p(dxj), N=2]y|+1< j <
N —|y], in the definition ofh, in formula (5.2).)

It can be seen with the help of Theorem 7.1 that the transfiioma

o Expaty — A,

wherel |, (f) = nzoli,(fn), f = (fo, f1,...) € Exp.#y is a unitary transformation,
and so are the transformatiofrg)¥/21;, from %' to %,

Let us consider the special cadé, .7, u) = (RV,%4Y,A), whereA denotes the
Lebesgue measureRY. A random orthogonal measure corresponding iscalled
the white noise. A randorspectral measureorresponding td , when the Lebesgue
measure is considered as the spectral measure of a geeéfaiz, is also called a
white noise. The next result, that can be considered as amaRtancherel formula,
establishes a connection between the two types of Wieldanrttgrals with respect
to white noise.

Proposition 7.2.Let f = (fo, f1,...,) € ExpJ#, be an element of the Fock space
corresponding to the Lebesgue measure in the Euclideanesfic.2"). Then
/= (f§,f],...,) € Exp#4 with the functions §= fo and f = (2m)~"/2f,
n=12,..., (where fo(us,...,un) = [ €Y fr(xq,..., %)) dxq ... ¥, with x =
(X1,...,X%) and u= (ug,...,un)), and

i:‘// fa(X1, ..., Xn) Zy (dxq) ... Zy (dXn)
4 i;/f,;(ul,...,un)zA(dul)...zA(dm),

where Z (dx) is a white noise as a random orthogonal measure, apdda) is a
white noise as a random spectral measure.

Proof of Proposition 7.2We have
(21| fallz = lIfoll2.

hencef’ € Exp.7%,.
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Let ¢1, @2, ... be a complete orthonormal system_ii'l. Theng;,¢5,... isalsoa
complete orthonormal systemliﬁ, and if

then

Hence an application ofdts formula for both types of integrals, (i.e. Theorems 4.3
and 7.1) imply Proposition 7.2. O

fa(Us,....Un) = Cjy....jn @], (U2) - @, (Un).

Finally we restrict ourselves to the cage= 1. We formulate a result which reflects

a connection between multiple Wieneg-ihtegrals and classicaldtintegrals. Let
W(t), a<t <b, be a Wiener process, and let us define the random orthogonal
measure(dx) as

Z(A):./.XA(X)W(dx), AcClab), Ac %

Then we have the following

Proposition 7.3.Let f € L%/An[am, whereA [a,b) denotes the Lebesgue measure on
the intervalla,b). Then

// F(Xs- . %) Z(dX0) ... Z(d%) (7.2)
—nl /ab (/at < (/;3 ( : f(tl,‘..,tn)W(dtl))W(dt2)> ...)W(dtn)> .

Proof of Proposition 7.3Given a functionf Jian[a.b), let the functionf be defined
as

S (X, X)) I X <X < - <X
F(x1,-- %) = {0 otherwise.

It is not difficult to check Proposition 7.3 for such a spedéiadction f € c}i})ﬂa‘b) for

which the above defined functiohis the indicator function of a rectangle of the
n

form [] [aj,b;) with constantsa < a; < by <a, < by <--- <ay <b, <b. Here
j=1

we exploit the relationt’(f) = n!l’(f). Beside this, we have to calculate the value
of the right-hand side of formula (7.2) for these simple tiows f € ‘%/)\n[a.b)' A

n
simple inductive argument shows that it equgg|gW (b;) —W(a;)] if a<ay < b1 <

j=1

a <bp<---<ay<by,<Db, and it equals zero otherwise. Then a simple limiting
procedure with the help of the approximation of general fions i”%/ﬂa,b) by the
linear combinations of such functions proves Propositi@nifT the general casel
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As a consequence of Proposition 7.3 in the case 1 multiple Wiener—Id in-
tegrals can be substituted by lintegrals in the investigation of most problems. In
the casev = 2 there is no simple definition ofdtintegrals. On the other hand, no
problem arises in generalizing the definition of multipleenér—I6 integrals to the
casev > 2.



Chapter 8
Non-central Limit Theorems

In this chapter we investigate the problem formulated ingié@l, and we show
how the technique of Wienerétintegrals can be applied for the investigation of
such a problem. We restrict ourselves to the case of disaetiom fields, although
the case of generalized random fields can be discussed irsttiheosame way. We
also present some generalizations of these results whichearoved in a similar
way. But the proof of these more general results will be aditThey can be found
in [9]. First we recall the following

Definition 8A. (Definition of Slowly Varying Functions.) A function L(t), t €
[to,®), to > O, is said to be a slowly varying function (at infinity) if

lim —=~ =1 forall .
tmL() orall s>0

L(st)
t
We shall apply the following description of slowly varyingrfctions.

Theorem 8A. (Karamata’s Theorem.) If a slowly varying function [t), t > to,
with someg > 0, is bounded on every finite interval, then it can be repre=ebint

the form
t
L(t) :a(t)exp{/ ‘E(S')ds},
to S
where dt) — ap # 0, ande(t) — 0ast— co.

Let Xy, n € Zy, be a stationary Gaussian field with expectation zero andra-co
lation function

() =Ex% = %a (L L), neZv Hn£On) @)
where 0< a < v, L(t),t > 1, is a slowly varying function, bounded in all finite

intervals, anda(t) is a continuous function on the unit sphe®_1, satisfying the

85



86 8 Non-central Limit Theorems

symmetry property(x) = a(—x) for all x € .#,_1. Let G denote the spectral mea-
sure of the fieldX,, and let us define the measuf@g, N =1,2,..., by the formula

GN(A)—LT;)G<G>, Ac®’, N=12,.... (8.2)

Now we recall the definition of vague convergence of not nemély finite mea-
sures on a Euclidean space.

Definition of Vague Convergence of Measures.et G,,n=1,2,..., be a sequence
of locally finite measures over'Ri.e. let G(A) < o for all measurable bounded
sets A. We say that the sequenge/@guely converges to a locally finite measuge G
on R (in notation G, — G) if

lim f(x)Gn(dx):/f(x)Go(dx)

n—oo
for all continuous functions f with a bounded support.
We formulate the following

Lemma 8.1.Let G be the spectral measure of a stationary random field with
correlation function £n) of the form (8.1). Then the sequence of measuigsl&
fined in (8.2) tends vaguely to a locally finite measuge The measure ghas the
homogeneity property

Go(A) =t"%Go(tA) forallAe %% andt>0, (8.3)

and it satisfies the identity

/étx ﬁ 1= COSX” Go(dx) 8.4)

a(\iﬁ\)
_ 1o IxDy .1 = xW dx, forallt cR".
[ D ()

Remark.One may ask whether there are stationary random fields witlelee
tion function satisfying relation (8.1), or more generalpw large the class of
such random fields is. It can be proved that we get a correldtinction of the
form (8.1) with the help of a spectral measure with a spectealsity of the form
g(u) = u|?Vb( M) (Ju]), ue RY, whereb(-) is a non-negative smooth function on
the unit spherdu: ue RY, Jul = 1}, andh(u) is a non-negative smooth function
on R! which does not disappear at the origin, and tends to zerofiattynsuffi-
ciently fast. The regularizing functidn(|u|) is needed in this formula to make the
functiong(-) integrable. Results of this type are studied in the theoeoieralized
functions.
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At a heuristic level the class of spectral meas®ég which determine a corre-
lation functionr(-) satisfying relation (8.1) can be described in the followivay.
They are such measur&for which the asymptotic identity5(By) ~ Cx* holds
with some constant > 0 for the (small) ballBx = {v: |v| <x} asx — 0, and
the effect of the singularities of the meas@eutside the origin is in some sense
small. At this heuristic level we disregarded the posgibitif a factorL(|x|) with
a functionL(-), slowly varying at the origin. Thus heuristically we can shgt the
asymptotically homogeneous behavioun) ~ Cn~? of the correlation function at
infinity corresponds to the asymptotically homogeneoustielir G(By) ~ Cx* of
the spectral measui@ corresponding to it in the neighbourhood of zero together
with some additional restrictions about the singularitiéshe spectral measurt@
outside zero which guarantee that their influence is notttoemg. These considera-
tions may help us to understand the content of one of the musdritant conditions
in the subsequent Theorem 8.2.

We postpone the proof of Lemma 8.1 for a while.
Formulae (8.3) and (8.4) imply that the functia(t) and the numbeuo in the
definition (8.1) of a correlation functionn) uniquely determine the measuBg.

v .
Indeed, by formula (8.4) they determine the (finite) measprézfgfs);(”Go(dx),
i1

since they determine its Fourier transform. Hence they ditermine the mea-
sureGp. (Formula (8.3) shows thddg is a locally finite measure). Let us also re-
mark that sinceGy(A) = Gn(—A) for all N=1,2,... andA € #Y, the relation
Go(A) = Go(—A), A e Y also holds. These properties of the meassgamply
that it can be considered as the spectral measure of a geedradndom field. Now
we formulate

Theorem 8.2.Let X,, n € Z,, be a stationary Gaussian field with a correlation
function r(n) satisfying relation (8.1). Let us define the stationary ramdieldé; =
Hk(X), j € Zy, with some positive integer k, wherg(k) denotes the k-th Hermite
polynomial with leading coefficient 1, and assume that thaupatera appearing
in (8.1) satisfies the relatiod < a < ¢ with this number k. If the random field§'z
N=12,...,ne Zy, are defined by formula (1.1) withyA= NV%/2 (N)¥/2 and
the above defined; = Hc(X;), then their multi-dimensional distributions tend to
those of the random field;Z

z: :/xn(x1+...+xk)zeo(dx1)...zGo(dxk), nez,.

Here Zs, is a random spectral measure corresponding to the specteasure @
which appeared in Lemma 8.1. The functjgt:), n= (nM, ..., n(")), is (similarly
to formula (6.2) Chapter 6) the Fourier transform of the icalior function of the

v
v-dimensional unit cubg] [n(P),n(P) 4-1].
p=1

RemarkThe condition that the correlation functiofn) of the random field,, n €
Zy, satisfies formula (8.1) can be weakened. Theorem 8.2 ananiae®il remain
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valid if (8.1) is replaced by the slightly weaker condition

lim sup rm)

=1
=, neZy,|n[>T |n|*"a(‘—2|) L(|n|)

)

where 0< a < v, L(t),t > 1, is a slowly varying function, bounded in all finite
intervals, and(t) is a continuous function on the unit sphe®_1, satisfying the
symmetry propertya(x) = a(—x) for all x € .#,_1.

First we explain why the choice of the normalizing constagtin Theorem 8.2
was natural, then we explain the ideas of the proof, finallyweek out the details.

It can be shown, for instance with the help of Corollary ShatEH (& )Hk(n) =
E: &% :n* =KI(EEN)K for a Gaussian random vectt§,n) with EE =En =0
andEE2 =En?=1. Hence

Ny2 o KD Lok K Cekak (-] Lk
=@ =g 30V 5 N (4= i

with the setBy introduced after formula (1.1). Some calculation with thedphof
the above formula shows that with our choicefgfthe expectatiof (Z))? is sep-
arated both from zero and infinity, therefore this is the ratnorming factor. In
this calculation we have to exploit the conditika < v, which implies that in the
sum expressing (Z))? those terms are dominant for whigh- | is relatively large,
more explicitly which are of ordeX. There are consil?¥ such terms.

The fieldé,, n e Z,, is subordinated to the Gaussian figld It is natural to write
up its canonical representation defined in Chap. 6, and tessg) via multiple
Wiener—Ib integrals. 1d's formula yields the relation

& = Hi ( / é("”zca(dx)) = [elimrmzg(dx).... Ze(dx),

whereZg is the random spectral measure adapted to the randon¥fjelthen

1 o
n=a Y /é<J=X1+'“+Xk)zG(dx1)...zG(dxk)
jeBN
Nl (i)
1 ) v e|N(xl T+t X )_1
= — [ Nmat-xJ : : Za(dxa) ... Za(dxc).
AN/ ]EL o) _q c(dxy)... Zo(dX)
Let us make the substitutioyy = Nx;, j = 1,...,k, in the last formula, and let

us rewrite it in a form resembling formula (6.8). To this etet,us introduce the
measure&y defined in (8.2). By Lemma 4.6 we can write

ZN é/fN<y1,...,yk>xn(yl+-~~+yk)zGN(dyl>...zGN(dm<)
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with
(s ) = [ i1+ )
Nyl,...,kall 1o vl 1\
=1 (explid(y? +-+y) b —1)N

where Xn(-) is the Fourier transform of the indicator function of the tuoiibe

(8.5)

|Z| (W nl) +1). (It follows from Lemma 8B formulated below and the Fubini
j=1

iheorem that the set, where the denominator of the fundiiodisappears, i.e. the
set wherey\!) + - - +-ylJ) = 2IN 7T with some integel £ 0 and 1< j < v has zero
Gn x --- x Gy measure. This means that the functidiysare well defined.) The
functionsfy tend to 1 uniformly in all bounded regions, and the measGigsend
vaguely toGp asN — o by Lemma 8.1. These relations suggest the following lim-
iting procedure. The limit o) can be obtained by substitutirfg with 1 andGy
with G in the Wiener—Id integral expressing. We want to justify this formal
limiting procedure. For this we have to show that the Wietiérintegral express-
ing Z\ is essentially concentrated in a large bounded region itdgnt of N. The
Lo-isomorphism of Wiener-&t integrals can help us in showing that. We shall for-
mulate a result in Lemma 8.3 which is a useful tool for theifigsttion of the above
limiting procedure.

Before formulating this lemma we make a small digressiowals explained that
Wiener-Id integrals can be defined also with respect to random statidields
Zs adapted to a stationary Gaussian random field whose spew@dures may
have atoms, and we can work with them similarly as in the cdsgon-atomic
spectral measures. Here a lemma will be proved which shostdritthe proof of
Theorem 8.2 we do not need this observation, because if thielation function
of the random field satisfies (8.1), then its spectral meaisunen-atomic. More-
over, the measur€& has an additional property which guarantees that the fomcti
fn(Y1,...,Yn) introduced in (8.5) can be defined in the sp&é with the product
measurésy x - - - X Gy.

Lemma 8B. Let the correlation function of a stationary random fielg, X € Z,,
satisfy the relation (n) < Ajn|~® with some A> Oanda > Oforalln € Z,, n#0.
Then its spectral measure G is non-atomic. Moreover, thetpfanes ¥) =t have
zero G measure forall < j < v andte R

Proof of Lemma 8BLemma 8B clearly holds itr > v, because in this case the
spectral measur& has even a density functiag(x) = 5 e (™r(n). On the

neZy
other hand, th@-fold convolution of the spectral measugawith itself (on the torus

RY/2mZ,) has Fourier transfornr,(n)P, n € Z, and as a consequence in the case
p > ¢ this measure is non-atomic. Hence it is enough to show thiag i€onvolution
G« G is a non-atomic measure, then the measgiis also non-atomic. But this is
obvious, because if there were a poirt R’ /2nZ, such thaG({x}) > 0, then the
relationG « G({x+x}) > 0 would hold, and this is a contradiction. (Here addition
is taken on the torus.) The second statement of the lemmaecprobed with some



90 8 Non-central Limit Theorems

small modifications of the previous proof, by reducing it e tone-dimensional
case. O

Now we formulate a result that helps us in carrying out soméilg procedures.

Lemma 8.3.Let Gy, N=1,2,..., be a sequence of non-atomic spectral measures
on R tending vaguely to a non-atomic spectral measugel@®t a sequence of mea-
surable functions K = Kn(x1,...,%), N=0,1,2, ..., be given such thatiKe %”é‘N

for N=1,2,.... Assume further that these functions satisfy the follovpirogper-
ties: For all € > O there exist some constantsAA(g) > 0and Ny = Np(¢) > 0and
finitely many rectangles;P. . ., Py with some cardinality M= M(g) on RV such that

the following conditions (a) and (b) formulated below witle tielp of these numbers
and rectangles are satisfied. (We call a set B8V a rectangle if it can be written

in the form P=L1 x - -- x Ly with some bounded open setsd. %", 1 < s< k, with
boundariesdLs of zero G measure, i.e. gdLs) =0forall 1 <s<Kk.)

M
(@) The function K is continuous on the setB [—A,A}""\ U Py, and Ky — Ko
j=1

uniformly on the set B as N- «. Besides, the hyperplaneg x =A have zero
Go measure foralll < p < v.

(0)  JrorglKn(xa,. ., PGn(dx)...Gu(dx) < & if N =0 or N > No, and
Ko(—X1,...,—X¢) = Ko(xq, ..., %) forall (xq,...,x) € R,

Then l@e%gko, and
/KN(Xl’---axk)ZGN(dxl)--~ZGN(ka)2’/KO(leu-,Xk)ZGO(dX1)~~ZGo(ka)

as N— oo, where= denotes convergence in distribution.

Remark.In the proof of Theorem 8.2 or of its generalization Theorei2i &r-
mulated later a simpler version of Lemma 8.3 with a simpleopmwould suffice.
We could work with such a version where the rectangledo not appear. We for-
mulated this somewhat more complicated result, becausaibe applied in the
proof of more general theorems, where the limit is given lghsa Wiener—ib in-
tegral whose kernel function may have discontinuities.sTiigseemed to be better
to present such a result even if its proof is more complicatdéa proof applies
some arguments of Lemma 4.1. To work out the details it tumedo be useful to
introduce some metric in the space of probability measut@dgshwmetricizes weak
convergence. Although this may look a bit too technical, dd@ possible to carry
out some arguments in a natural way. We can tell with the hielpi® notion when
two probability measures are close to each other.

Proof of Lemma 8.3Conditions (a) and (b) obviously imply that

[ Kol %) 2 Gol ). Gol ) < oo
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henceKp € %Zko. Let us fix ane > 0, and let us choose sorde> 0, Np > 0 and
rectangles, ..., Ry which satisfy conditions (a) and (b) with thés Then

2
E U[l—xg(xl,...,xk)]KN(xl,...,xk)ZGN(dxl)...ZGN(dxk)

<K /RKV\B KN (X0 . %) |2Gn (A0 ) ... G (dge) < &3 (8.6)

for N =0 orN > Ny, wherexg denotes the indicator function of the &introduced
in the formulation of condition (a).

SinceB c [-A A, andGy — Go, henceGy x --- x Gn(B) < C(A) with an
appropriate consta(A) < o forallN =0, 1,.... Because of this estimate and the
uniform convergenc&y — Kg on the seB we have

2
E |:/(KN(X1,...,X|() — Ko(X]_,...,Xk))XB(X]_,...,Xk)ZGN(dX]_)...ZGN(ka)

gk!/B|KN(X1,...,xk)—Ko(xl,...,xk)|zGN(dx1)...GN(dxk)<£3 8.7)

for N > Nj with someN; = Ny (A, €).
First we reduce the proof of Lemma 8.3 to the proof of the iahat

/’ Ko(X0, %) XB (X0 - %) Zay (%4 - . . Z5 (%)
2%/Ko(xl,...,xk)xB(xl,...,xk)zGO(dxl)...zGO(dxk) 8.8)

with the help of formulas (8.6) and (8.7), and then we shall/pr(8.8). It is simpler
to carry out this reduction with the help of some metric onghace of probability
measure which induces weak convergence in this space. Heseal some classi-
cal notions and results about convergence of probabilitgsuees on a metric space
which will be useful in our considerations.

Definition of Prokhorov Metric, and Its Properties. Given a separable metric
space(X,p) with some metrig let . denote the space of probability measures
on it. The Prokhorov metripp is the metric in the space” defined by the formula
pe(u,v) =inf{e: u(A) < v(A®%)+¢forall A € o7} for two probability measures
U,v €.%, where A = {x: p(x,A) < £}. The above definegp is really a metric
on . (in particular, pp(u,v) = pp(v, 1)) which metricizes the weak convergence
of probability measures in the metric spacé, p), i.e. Un 2 o for a sequence of
probability measures N-0,1,2,... if and only if,\I‘iLnoc pp(Un, to) = 0.

The results formulated in this definition can be found e.g18i. Let us also
recall the definition of weak converges of probability measiwon a metric space.

Definition of Weak Convergence of Probability Measures on a Metc Space.
A sequence of probability measumag n=1,2,..., on a metric spacéX, p) con-
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verges weakly to a probability measyreon this space, (in notatiop, — ) if
rI]im JF(X)un(dx) — [ f(x)u(dx) for all continuous and bounded functions on the

space(X, p).

| formulated the above result for probability measures iraggal metric space,
but | shall work on the real line. Given a random variaBléet 11(£) denote its

distribution. Let us remark that the convergerf@eg & asN — o of a sequence
of random variableséy, &1,&»,... is equivalent to the statemept(&y) W (&)
or pp(H(én), U(&n)) — 0 asN — . Hence by puttingn = K!lgy (Kn (X1, - .., X)),
N=0,1,2,... we can reformulate the statement of Lemma 8.3 in the follgwiay.
For all € > 0 there exists some indé¥) = N (¢) such thaipp(u(én), 1 (éo)) < 4¢
forall N > Ny.

To reduce the proof of Lemma 8.3 to that of formula (8.8) firstsinow that for
three random variables, £ andn such thaP(|n| > €) < € the inequality

pp(M(E+n),1(&)) <pp(u(&),u(E))+e (8.9)

holds.

As pp is a metric we can writgp(H(§ + 1), 1(E)) < pp(U(E + 1), H(E)) +
pe(u(&),u(&)), and to prove (8.9) itis enough to show tpatu (& +n),u(&)) <e
if P(In| >¢) <e.

This inequality holds, sincdw: &(w) € A} C {w: &(w)+n(w) € AE} U
{w: |n(w)| > €}, and as a consequenBéé € A) < P(§ +n € A®) +P(|n| >
€) <P(&+n € Af)+ ¢ forany setA € % if P(|n| > €) < €. By the definition of
the Prokhorov metric this means that the desired inequiaditgs.

Put
&V = Kig, (Ko(Xa, ... X)XB(X, - - X)),
&7 = gy (Kn (X0, %) — Ko(Xt, -+ X)) XX, X)),
5[513) = kllGN(l_XB(Xl,...7Xk))KN(Xl7-..,Xk)),
én = Kllgy (Kn)

forall N =0,1,2,.... With this notation it follows from relation (8.8) and thecta
that the Prokhorov metric metricizes the weak convergemae t

pr((&), u(EM) <& it N> Nj(e)

with some threshold indel¥; (¢). Formulas (8.6) and (8.7) together with the Chebi-
shev inequality imply thaP(|E,E|2)| >¢)<eand P(|E,E,3)| >e¢) <eif N>Nj(g)
or N = 0 with some threshold indedj(¢). Besides, we havé = fél) + Eég) and

En = E,Sl) + E,E,Z) + 5,5,3) for N=1,2,.... The above mentioned properties of the
random variables we considered together with relation) (@8ly that
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pe(H(En), 1(&)) = pp(k(& +&F + ,53),u(60 +&7)
< pe((E + & + &) (g +e
< pp (u(EN +&7 ) H(EY)) +2¢
< pp(H(EL), H(ESY)) + 3¢ < 4e

if N> Nj(e) =max(N;(€),N5(¢)). Hence Lemma 8.3 follows from (8.8).

To prove (8.8) we will show th&o (X, ..., %) Xs(X1,- .., X) can be well approx-
imated by simple functions fron%”éo in the following way. For alle’ > 0 there

exists a simple functioriy € ;fé‘o such that

E‘/.(Ko(X]_, ... 7Xk)XB(X]_, . ,Xk) — fgl(Xl, . ,Xk))zGo(de_) Go(d)‘k) S

k!
(8.10)
and also
e’
E/ (Ko(Xe,- -, Xi) XB (X2, - - %) — Fer(Xa, - ., %))*Gr(dxa) ... G ((dXe) < vl
(8.11)

if N > Np with some threshold indedy = No(&’,Ko(+) xa(+) ). Moreover, this simple
function fo, can be chosen in such a way that it is adapted to such a regstens
2 ={4j, j ==+1,...,£M} whose elements have boundaries with ZBganeasure,
i.e.Go(d4j) =0forall 1<|j| <M.

To prove (8.8) with the help of these estimates first we sha tiis function
fe € A& satisfies the relation

/fs,(xl,...,xk)zGN(dxl)...zGN(dxk)2/fe,(xl,...,xk)zeo(dxl)...zGO(dxk)

(8.12)
asN — . In the proof of (8.12) we exploit that we can take such a r@gsys-
tem 7 = {4, j = +1,...,+£M} to which the functionf, € 2?6"0 is adapted and

which has the propert@o(dA;) = 0 for all j = £+1,...,+M. Besides, the spec-
tral measure$&y are such thaGy Y, Go. Hence the (Gaussian) random vectors
(Zey (4j), | ==%1,...,£M) converge in distribution to the (Gaussian) random vec-
tor (Zg,(4;), j =+1,...,£M) asN — . The same can be told about such random
variables that we get by putting the arguments of these ranagators to a continu-
ous function (of 2 variables). Since the integrals in (8.12) are polynomiathese
random vectors, we can apply these results for them, andri@y relation (8.12).
Put

Ko(X1, .-+, Xk) XB (X1, - - -, Xk) — Fer(Xa, ..., %) = ho(Xd, ..., X). (8.13)

By relations (8.10), (8. 11) and the Chebishev inequahitik!lg,(ho)| > €') < ¢
andP(|k!lgy (ho) > €’) < €' if N > No. Sincelgy (Kn(X1,- .., X)X8(X1,- .., X)) =
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lay (fer (X1, ..., %) + (ho(X1,...,%)), N =0,1,2,..., the above relations together
with formulas (8.12) and (8.9) (with the numbke&rinstead ofe) imply that

limsuppp (1 (Kgy (Ko(-)XB(+))), M (K!a, (Ko(-) x8(+))))

N— o0
— |irNT1§oljppp(u(k! lon (fer () +ho(+))), H(Kay(fer(+) +ho(+))))
= linﬁfgppp(u(k! loy (fer (1)) +Kllgy (ho(+))), t(Kllgy (fer () + Kty (ho(+))))
< limsuppe(p(Klgy (fer(-))), H(Kgy(fer(+)))) +2¢" = 2¢".

N—oo

Since this inequality holds for aff > 0 this implies relation (8.8). To complete the
proof of Lemma 8.3 we have to justify relations (8.10) and {3.

Relation (8.10) is actually a version of Lemma 4.1, but itesta slightly stronger
approximation result under the conditions of Lemma 8.3. §taéement that for all
¢’ the functionKo(+) xs(+) can be approximated with a simple functitn(xy, . .., X«)
which satisfies (8.10) agrees with Lemma 4.1. But now we waichbose such a
simple functionf, which is adapted to a regular systém= {4;, j=+1,...,£M}
with such elements that have the additional prop&gydA;) = 0 for all indices;j.

A function f with these properties can be constructed by means of a stigti-

fication of the proof of Lemma 4.1. We exploit that in the prasease the function

Ko(-)xs(+) is almost everywhere continuous with respect to the prochedsure

G(‘g = Gp x --- x Gg. This property is needed in the first step of the construgtion
k times

where we reduce the approximation result we want to provesi@htly modified

version ofStatement A

In this modified version of5tatement Ave want to find a good approximation
of the indicator function of such sefswhich satisfies not only the properties de-
manded inStatement Abut also the identitie&o(dA) = 0 andGp(dA;) = 0 hold
for them. On the other hand, we demand the iderigydB) = 0 also for the set
B whose indicator function is the approximating functiorStatement ATo carry
out the reduction, needed in this case we approximate thaifurko(-) xg(+) with
such an elementary function (a function taking finitely maajues) whose level
sets have boundaries with ze@é =G x --- x Gg measure. This is possible, since
the boundaries of these level sets consist of such pointsendither the function
Ko(-)xs(-) takes the value from an appropriately chosen finite set,isiftimction
is discontinuous. At this point we exploit that the functi§s(-) xg(-) is almost ev-
erywhere continuous with respect to the meastye

To complete the reduction of the proof of (8.10) to the nevsigar of Statement A
we still have to show that if the sét can be written in the formh = A U (—Aq)
such thaty; N (—Aq) = 0, andGE(dA,) = 0, then for alln > 0 there is soméy =
A1(n) C Aq such thaG§(A\ (ArU(—A1)) < 1, p(A1, —A1) > 0, andGE(dA;) = 0.
Indeed, there is a compact g€tc A; such thatGK(A;  K) < 1. Then also the
relationp (K, —K) = & > 0 holds. By the Heine—Borel theorem we can find an open
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setG such thatk ¢ G ¢ K%/3 with K%/3 = {x: p(x,K) < §}, andG§(dG) = 0.
Then the sef; = A NG satisfies the desired properties.

After making the reduction of the result we want to prove e thodified version
of Statement Ave can follow the construction of Lemma 4.1, but we chooseathe
step sets with zerGg x - - - x Gg boundary.

A more careful analysis shows that the function construteslich a way sat-
isfies also (8.11) foN > Ny with a sufficiently large threshold indéX,. Here we
exploit thatGy — Go. This enables us to show that the estimates we need in the con-
struction hold not only with respect to the spectral mea&grbut also with respect
to the spectral measur€s with a sufficiently large indel. We can get another ex-
planation of the estimate (8.11) by exploiting that the tiorchg(x, .. .,Xk) defined
in (8.13) is almost everywhere continuous with respectéatieasur&o x - - - x Go.

It can be shown that the vague convergence has similar giepeas the weak con-
vergence. In particular, the above mentioned almost evggysvcontinuity implies
that

tim [ ho(x1,.. X)Gn(dx) - Gu(dx) = [ ol %) Go( ). Go( ).

O

Remarkln Lemma 8.3 we proved the convergence of Wienéridtegrals with re-
spect to random spectral measureg corresponding to spectral measu@&g on

the Euclidean spad®” under appropriate conditions. There is a natural version of
this result which we get by considering WienedHititegralsk!lg, (Kn) on the torus

of size Zy rwith some number€y — o asN — oo, To find a good formulation of
the result in this case observe that the tdRg2mnZ, can be identified with the set
[-Cn1T,CymT)Y C RY in a natural way. This identification enables us to consider t
spectral measur@y as a measure da-Cy11,Cy11)” and the functiorkKy as a func-
tion on this set, which can be extended to a functiofRbnperiodic in all of its co-
ordinates with periodicity #Cy. With such a notation we demand in this version of
Lemma 8.3 thaGy - Go, and conditions (a) and (b) hold with these (non-atomic)
measure$y and functiondy. This version of Lemma 8.3 can be proved in almost
the same way. We can reduce its proof to the verification ohtda (8.8), and after
this it has no importance whether we workR# or in [-CyT,CyT)Y.

Now we turn to the proof of Theorem 8.2.

Proof of Theorem 8.2Me want to prove that for all positive integgssreal numbers
C1,...,Cpandn € Zy, | =1,...,p,
p p
2 *
ZLC|Zr’:|l = Zqznl,
1= 1=

since this relation also implies the convergence of theirdihensional distribu-
tions. Applying the same calculation as before we get withhblp of Lemma 4.6
that
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quZ AN ZKC|/JEZBN e' Ixat %) Zg(dxl) Zg(d)q()

i
and o
> aZh 2 [ K %0 Zay (). Zay ()
=1

with

KN(xl,...,xk): Zi I,eB ex { ( X1+ +Xk)}

n

= fn(X1,- -, Xk) qunl (Xe 4+ X)- (8.14)

1=
with the function fy defined in (8.5) and the measuBy defined in (8.2), The
function )”(n( -) denotes again the Fourier transform of the indicator famctf the

unit cube|‘| W nM 1), n=(n®, .. .n¥).
Let us deflne the function

p

Ko(X1,..., %) = Z\CI)?m (X4 + %)
|=

and the measurgs, on R by the formula

(8 = [ K. %) PGn(x3)....Gu( o),
Ac 2 andN=0,1,.... (8.15)

In the caséN = 0 Gy is the vague limit of the measur&.

We prove Theorem 8.2 by showing that Lemma 8.3 can be appligdtihese
spectral measureSy and functionsKy. (We choose no exceptional rectangigs
in this application of Lemma 8.3.) Sinc&y Y, Go, andKy — Kg uniformly in all
bounded regions iR¥, it is enough to show, beside the proof of Lemma 8.1, that the
measuregiy, N =12, ..., tend weakly to the (necessarily finite) measugaevhich
is also defined in (8.15), (in notatiquy — Ho), i.e. [ f(X)un(dx) — [ f(X)to(dx)
for all continuous and bounded functiofion R<. Then this convergence implies
condition (b) in Lemma 8.3. Moreover, it is enough to show stightly weaker
statement by which there exists some finite meagigrsuch thatuy X Lo, since
then i must coincide withg because of the relationy Y, Gg andKy — Ko uni-
formly in all bounded regions @&, andKg is a continuous function. This implies
thatun ~ Ho, andplo = Ho.

There is a well-known theorem in probability theory abow dguivalence be-
tween weak convergence of finite measures and the convergdribeir Fourier
transforms. It would be natural to apply this theorem forvrg iy X Lo. On the
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other hand, we have the additional information that the mnesgy, N =1,2,...,
are concentrated in the cubpsN7, N7k, since the spectral measuBis con-
centrated if—r, m)". It is more fruitful to apply a version of the above mentioned
theorem, where we can exploit our additional informatioe. fdfmulate the follow-

ing

Lemma 8.4.Let uy, iy, ... be a sequence of finite measures dsieh thatuy (R \
[fCNn,CNn)') =0forallN=1,2,..., with some sequenceyC- « as N — oo,
Define the modified Fourier transform

¢N<t)=/wexp{i([t§:], )}de), teR,

where[tCy] is the integer part of the vector fC= R'. (For an xc R' its integer part
[x] is the vector re Z; for which XP) — 1 < n(P) < x(P) if x(P) > 0, and XP) < n(P) <
xP) +1ifx(P <0forall p=1,2,...,1.) Ifforall t € R the sequencey(t) tends
to a functiong (t) continuous at the origin, then the measurgsweakly tend to a
finite measurgly, and ¢ (t) is the Fourier transform oflo.

| make some comments on the conditions of Lemma 8.4. Let usrebshat if
the measuregy or a part of them are shifted with a vectar@yu with someu € 7,
then their modified Fourier transforngg (t) do not change because of the periodic-
ity of the trigonometrical functiong i/ j € Z,. On the other hand, these new
measures which are not concentrated-Cy 17,Cy n)', have no limit. Lemma 8.4
states that if the measurgg are concentrated in the cublesCy 1, Cy n)', then the
convergence of their modified Fourier transforms definedemima 8.4, which is
a weaker condition, than the convergence of their Fourgarsiorms, also implies
their convergence to a limit measure.

Proof of Lemma 8.4The proof is a natural modification of the proof about the
equivalence of weak convergence of measures and the cemoergf their Fourier
transforms. First we show that for &> 0 there exits somK = K(¢) such that

pn(x: xeR, XY >K)<e forall N> 1. (8.16)

As ¢ (t) is continuous at the origin there is soie> 0 such that

|¢(0,...,0)—¢(t,0,...,0)\<§ if |t| <o (8.17)
We have
0 < Re[pn(0, ...,0) — ¢n(t,0,...,0)] < 2¢n(0, .., 0) (8.18)

forallN=1,2,.... The sequence in the middle term of (8.18) tends to
Re[¢(0,...,0) — ¢(t,0,...,0)]

asN — oo. The right-hand side of (8.18) is a bounded sequence, dingeonver-
gent. Hence the dominated convergence theorem can be édpmliehe functions
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Re[¢n(O0,...,0) — ¢n(t,0,...,0)]. Then we get because of the conditiog —
and relation (8.17) that

[6CN]/Cn 1

lim Re[¢n(0,...,0) — ¢n(t,0,...,0)] dt

N—o0

_/ 5 Relo 0)—¢(t,07...,0)]dt<§

with the numbe® > 0 appearing in (8.17). Hence

£ [6Cn]/Cn 1
Ly Re[gn(0,...,0) ~ du(t,0, .., 0] dt
[50 1/C .
. 5CN o)
:n'Lm/ 5Cn R [Lé]x /CN}“N(dX)

]:
[6Cn]-1

> limsup zo Re {1—e”x(l)/CN} pin(dX)
=

N—oo /{\x(l)\>K} oCn
11— dleenxd /ey

=i 1- Re d
wagp/{x“bm( oCn 1— exD/Cy )uN( X)

with an arbitranK > 0. (In the last but one step of this calculation we have exgdbi
[0Cn]-1
thatt - 2 Re[1—&ix"/Cn] > 0 for all XU € RL)

Since the measungy is concentrated ifix: x € R, |x(Y| < Cym}, and

1_glcnxV/ey  Re (ie-ix(”/ZCN (1 — é[écN]x“)/cN) )

1— gx®/Cy i(exM/2CN _ gxM/2Cy)
1 Cnrt

<
(x| T XY

if [xV)] < Cnr, (here we exploit thaftsinu| > Z|ul if |u] < ), hence we have with
the choiceK = £

e

) un(dx) > Ilmsup uN(\x )| >K).

¢ > limsu <1 T
27 P {XV[>K} ox) N—oo
As the measuregy are finite the inequalityy (XY > K) < ¢ holds for each in-

dexN with a constanK = K(N) that may depend oN. Hence the above inequality
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implies that formula (8.16) holds for al > 1 with a possibly larger indeK that
does not depend adx.

Applying the same argument to the other coordinates we fiatlftr all € > 0
there exists somg(g) < o such that

I (R' \ [—C(s),C(e)]') <e foralN=1,2,....
Consider the usual Fourier transforms
Fu(t) = /RI ¥ (dx), teR.
Then

#n(0) -~ u(0)] < 26+ | () _ OI/On0| 1y ()

[-C(e).C(e)]

IC(¢)
WHN(Q)

< 2+

for all € > 0. Hencedn (t) — ¢n(t) — 0 asN — oo, anddy(t) — ¢ (t). (Observe that
un(R) = ¢n(0) — ¢(0) < 0 asN — o, hence the measurgg (R') are uniformly
bounded, an€@y — by the conditions of Lemma 8.4.) Then Lemma 8.4 follows
from standard theorems on Fourier transforms. O

We return to the proof of Theorem 8.2. We apply Lemma 8.4 @jjh= N and
| = kv for the measuregy defined in (8.15). Because of the middle term in (8.14)
we can write the modified Fourier transfoigyn of the measuregny as

p P
On(te, ... ) = Z Zcrcsz(tlJrnr —nNs,... t+ N —ng) (8.19)
with
1 1. .
Un(te,.. . t) = Nz\,/exp{'N((JLXl)+"'+(Jk,Xk))}

z Z exp{i (uN_V,x1+~~-+xk>}GN(dxl)...GN(dxk)

ueB) veB)
1 . .
= N RN S ZNr(u—VJrJl)...r(u—v—Hk), (8.20)

N
ueBy veBy

wherejp = [tpN], tp e R, p=1,... k.

The asymptotical behaviour @fiy(t1,...,t) for N — o can be investigated by
the help of the last relation and formula (8.1). Rewriting thst double sum in the
form of a single sum by fixing first the variable= u—v € [-N,N]Y NZ,, and then
summing up fott one gets
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wN(tl,...,tk):/ f(t,. .. e, X) dX
[71~,1]V
with

fn (tl, .. 7tk,X)

_ (1_[V“JNH>,,,<1_[MW>N]>r(vN]+jﬂ,”r(VN]+j@
N N N-aL(N) N-aL(N)

(In the above calculation we exploited that in the last sunfioafula (8.20) the
number of pairqu,v) for whichu—v=1= (I1,...,ly) equals(N — [I1])--- (N —
u]).)
Let us fix some vectotty,...,t) € R, It can be seen with the help of for-
mula (8.1) that for ale > 0 the convergence
fn(te, .t X) — folts, ..tk X) (8.21)

holds uniformly with the limit function

() a(z)
Foltr, .. teX) = (1— X)), (1 — [xV)) -2l A 8.22
olty - tX) = (1= Y] (1= XD T (822)
k
onthe seke [-1,1]\ U {x: |[x+tp| > &}.
p=1

We claim that

L,UN(tl, e ,tk) — wo(tl,...,tk) = /[71 e fo(tl,...,tk,X)dX7

andyy is a continuous function.
This relation implies thapiy — Lo. To prove it, it is enough to show beside
formula (8.21) that

/ folts, ..t X)dX| < C(e), p=1,....k (8.23)
[x+tp|<e

and

/|+t\ fa(t,. . toX)[dX< C(e), p=1,....k, andN=12,.. (8.24)
X+tp|<e

with a constan€(¢) such thaC(e) — 0 ase — 0.
By formula (8.22) and Klder’s inequality
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1/k
/ fo(tl,...,tk,X)dX <C |_| {/ |X+t||_kadx}
[x+tp|<€ 1<I<K, 1£p xe[-1,1)V

1/k
|:/ |X+tpkadX:| / SC/&.V/ka{
Ix+tp|<e

with some appropriat€ > 0 andC’ > 0, sincev —ka > 0, anda(-) is a bounded
function. Similarly,

. 1/k
[r (XN + )|
< APl J
/|x+tp\<s|fN(t1’ toX)dx srkl {/ —11v NKaL(N)K ™

N+ i) 7
{/x+tp<s W dx] : (8.25)

Itis not difficult to see with the help of Karamata’s theordmattif L(t),t > 1, is a
slowly varying function which is bounded in all finite intexg, then for all numbers
n > 0andK > 0 there are some constaits= K;(n,K) > 0, andC=C(n,K) >0
together with a threshold indéy¥ = No(n,K) such that

L(uN .
I_((N)) <Cu ™ if uN>Kjy, u<K, andN > Np.

Hence formula (8.1) implies that

[P (XN + [N]) = [r (XN + ji)] < CNTOL(N)[x+t|~“"
if X+t <K andN > No. (8.26)

Relation (8.26) follows from the previous relation and (8et)) if |[xN] + [t/ N]| >
Ki. It also holds if|[xN] + [t;N]| < K3, since in this case the left-hand side can be
bounded by the inequality ([XN] + [t;N]| < 1, while the right-hand side of (8.26) is
greater than 1 with the choice of a sufficiently large constafuepending om and
Ky). This follows from the relatiofx+t| =7 = N1 |N(x+t)| =97 > C;N? "
if |[XN]+ [tiN]| < Kg, andL(N) > N1,

We get with the help of (8.26) that

Ir (XN + jip)[¢ ' K —k
— = dx<B X+t (@+n) gy < BgV—kla+n)
/\x+tp\<s N-ka[ (N)k - |x+tp\<£| d -
Ir (XN + i)
/[11] NKaL (N)k dx<B".

for a sufficiently small constamt > 0 with some constan®,B',B” < « depending
onn andtp, 1< p<k

Therefore we get from (8.25), by choosingran- 0 such thak(a +n) < v, that
the inequality
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/‘ (b, . b X) | dx < Cev/k—(a+m)
J|x+tp|<e

holds with someC < . The right-hand side of this inequality tends to zero as
& — 0. Hence we proved beside (8.21) formulae (8.23) and (8a2¥)they have the
consequence thaiy(ta,...,t) — Wo(ty,...,t). Sincey(ts,...,t) is a continuous
function relation (8.19) with Lemma 8.4 imply that the me&syuy introduced

in (8.18) converge weakly to a probability measurélas: o, and as we saw at the
beginning of the proof of Theorem 8.2 this limit measure ningso.

Hence we can apply Lemma 8.3 for the spectral measBresnd functions
Kn(-), N=0,1,2,..., defined in Theorem 8.2. In this application of Lemma 8.3
we choose no rectang!®. The convergency — Go follows from Lemma 8.1.
Conditions (a) and (b) also hold with the choice of a suffittielarge numbeA =
A(g). The hard point of the proof was the checking of condition TH)is follows
from the relationuy — Ho. Thus we have proved Theorem 8.2 with the help of
Lemma 8.1. a

It remained to prove Lemma 8.1.

Proof of Lemma 8.lintroduce the notation

v eix(i)_l
Kn¥)=[]————, N=1,2,...,
N( ) ]I:LN(G'X“)/N—]_)

v gkl q
K = —
o(X) JI:II ix()

Let us consider the measurgg defined in formula (8.15) in the special cdse 1
with p=1, ¢; = 1 in the definition of the functioi(-), i.e. put

and

() = [ [Kn(PGu(dx, Ae#’, N=L12..
JA

We have already seen in the proof of Theorem 8.2 that> o with some finite
measurelp, and the Fourier transform @f is

" X+t
¢o(t)=/ (1_|X(1))...(1_|X(v>|)a<x+t>dx

J-1apv Ix+t|@

Moreover, sincéKy (x)|? — |Ko(x)|? uniformly in any bounded domain, it is natural

to expect thaGy — Go with Go(dx) = W“O( dx). ButKo(x) = 0 in some points,

and the functiorko(-)~2 is not continuous in these points. As a consequence, we
cannot give a direct proof of the above statement. Hence ply aystead a modified
version of this method. First we prove the following resudbat the behaviour of
the restrictions of the measurég to appropriate cubes:

For allT > 1 there is a finite measu®] concentrated of—T 7, T )Y such that
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lim [ (x)Gn(dx) = / f(x) G} (d) (8.27)

N—o0

for all continuous function$ which vanish outside the culie- T, T mm)".
Indeed, let a continuous functioh vanish outside the cube-Trm, Tm)" with
someT > 1. PutM = [Jt]. Then

/f(x)GN(dX) = LI?,:) ' Ll\(/ll\g) /f ('\I\/IIX> Oule
_ m/ f (I\’\/IIX> [Kaa (01 Hm (0
~enye | f<2Tx>\Ko<x>|—2uo<dX>

) dx
/f |K0 o) TKo(Z )" 0<2T) asN =,

because (x)|Ku ()| ~2 vanishes outside the cuber, 1", the limit relation

N

f(mX)IKM(X)I’2 — f(2TX)|Ko(x)|

holds uniformly, (the functiorko(-)~2 is continuous in the cubg-r, "), and
v = po asN — «. Hence relation (8.27) holds if we defim% as the restric-

tion of the measuref—lzuo(ﬂ) to the cube(—Tm, Tm)". The measure§g

appearing in (8.27) are consistent for different paransefiei.e. G is the restric-
tion of the measuréag' to the cubg(—Tm, Tm)Y if T/ > T. This follows from the
factthat/ f(x)G{ (dx) = [ f (x)Gg’(dx) for all continuous functions with support in
(=T, T)". We claim that by defining the measu@g by the relatiorGo(A) = G{ (A)
for a bounded sef and such numbeF > 1 for whichA C (-Tm, Tm)” we get

such a locally finite measui®y for which Gy Y, Go. The above mentioned vague
convergence is a direct consequence of (8.27) and the dw&iioit Gy, but to give a
complete proof we have to show tha§ is really a @-additive) measure.

Actually it is enough to prove that the restriction Gf to the bounded, mea-
surable sets ig-additive, because it follows then from standard resultmé@asure
theory that it has a unique-additive extension tg8Y. But this is an almost direct
consequence of the definition 6. The desiredr-aditivity clearly holds, since if

A= U An, the sefAis bounded, and the setg, n=1,2, ..., are disjoint, then there
isa numberT > 1 such thath C (—Tm, Tm)", the same relation holds for the sets
A, and theo-additivity of GJ implies thatGo(A) = 3 Go(An).
n=1
As Gy — Gp, and [Kn(x)|2 — |Ko(x)|2 uniformly in all bounded regions, the

relationuy — [l holds with the measurgy defined agip(A) = [, |Ko(X)|2Go(dx),
Ae Y. Sinceuy i Lo the measuregg and ip must coincide, i.e.
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A) = [ Ko(*Go(dx), Ae 2.
A

Relation (8.4) expresses the fact tipgtis the Fourier transform qfip.

It remained to prove the homogeneity property (8.3) of thasneeGy. For this
goal let us extend the definition of the measugggiven in (8.2) to all non-negative
real numbersl. It is easy to see that the relati@y, Y, Gp asu — o remains valid.
Hence we get for all fixed > 0 and continuous functionk with compact support
that

/f X)Go(dx) = lim [ £(x)Gu(dx) = lim %/f Gu(

uUu—o0 uU—o0 L

_ s“/f(sx)Go(dx) :/ f(x)s"Go(dS>.

This identity implies the homogeneity property (8.3)@&j. Lemma 8.1 is proved.
O

The next result is a generalization of Theorem 8.2.

Theorem 8.2. Let X,, n€ Z,,, be a stationary Gaussian field with a correlation func-
tionr(n) defined in (8.1). Let k) be a real function with the properties EN,) =
and EH(X,)? < o. Let us consider the orthogonal expansion

HX) =3 ciHj(x), Y cfjt <o, (8.28)
=1

of the function H-) by the Hermite polynomials Hwith leading coefficients 1).

Let k be the smallest index in this expansion such that @. If 0 < ka < v for the

parametera in (8.1), and the field ¥ is defined by the field, = H(Xy), n€ Zy,

and formula (1.1), then the multi-dimensional distribugoof the fields 2 with

An = NV~*0/2 (N)¥/2 tend to those of the fieldgZ;, n € Z,, where the field Zis

the same as in Theorem 8.2.

Proof of Theoren8.2'. DefineH’(x) = 5 c¢jH;j(x) andY,N = ﬁ Sy H(X). Be-
j=k+1 leBN

cause of Theorem 8.2 in order to prove Theore® Bis enough to show that

E(YN)2 -0 asN — .

It follows from Corollary 5.5 thaEH; (Xq)H| (Xm) = &j,1j! HEXaXm)) = &1 j!r(n—
m)J, whered;| = 0if j #1, andd; _1|f j =1.Hence

©0

1 . ;
B0 -z 3 c,J!SIEzBNws—t)w.

Some calculation yields with the help of this identity anchfiala (8.1) that
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1 _
E(YnN)Z _ % |:O(N2V (k+l)aL(N)k+l) +O(Nv) 0.
(Observe that we imposed the conditignjzj! < oo Which is equivalent to the con-
dition EH(Xq)? < 0.) Theorem &’ is proved. O

Let us consider a slightly more general version of the probievestigated in
Theorem &'. Take a stationary Gaussian random fixld EX, = 0, EX? = 1,
n € Z, with a correlation function satisfying relation (8.1), ahe fieldé, = H(Xy),
n € Z,, subordinated to it with a general functiét(x) such thaEH(X,) = 0 and
EH(X,)? < «. We are interested in the large-scale limit of such randolisi@ake
the Hermite expansion (8.28) of the functibtix), and letk be the smallest such
index for whichcy # 0 in the expansion (8.28). In Theoren28we solved this prob-
lem if 0 < ka < v. We are interested in the question what happens in the dpposi
case wherka > v. Let me remark that in the caser > v the fieldZ;, n € Zy,
which appeared in the limit in Theorem28does not exist. The Wienerdlintegral
definingZ,; is meaningless, because the integral which should be fongearantee
the existence of the Wienerélintegral is divergent in this case. Next | formulate a
general result which contains the answer to the above quessi a special case.

Theorem 8.5.Let us consider a stationary Gaussian random fielg KX, = 0,
E)gq2 = 1, n € Zy, with correlation function (n) = EXpyXmin, mn € Zy. Take a
function H(x) on the real line such that EEK,) = 0 and EH(X)? < «. Take the
Hermite expansion (8.28) of the functior(}), and let k be smallest index in this
expansion such thaf# 0. If

S < <e, (8.29)

then the limit

lim EZN(H)? = lim N7V r'(i—j) = o?l!
N-—o0 N-—o0 IEEBNJEZBN
exists for all indices > k, where 2'(H,) is defined in (1.1) with 4= N"/2, and&, =

H, (X,) with the I-th Hermite polynomial Hix) with leading coefficient 1. Moreover,
also the inequality

00
0% = Z(c,zl!a,2<oo
|=

holds.

The finite dimensional distributions of the random fief{ &) defined in (1.1)
with Ay = NY/2 and &, = H(X,) tend to the finite dimensional distributions of a
random fieldoZ;; with the numbero defined in the previous relation, wherg,Z
n e 7Z,, are independent, standard normal random variables.

Theorem 8.5 can be applied if the conditions of Theore@ Bold with the
only modification that the conditioka < v is replaced by the relatioka > v.
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In this case the relation (8.29) holds, and the large-saali of the random field
Zr'}‘, n € Z, with normalizationAy = NV/2 is a random field consisting of indepen-
dent standard normal random variables multiplied with tbhembero. There is a
slight generalization of Theorem 8.5 which also covers #eeka = v. In this re-

sult we assume instead of the condition (8.29) gt r (n)k = L(N) with a slowly
neBy

varying functionL(-), whereBy = {(ny,...,ny) € Zy: —N<n; <N, 1<j<v},
and some additional condition is imposed which states thaparopriately defined
finite numbero? = ,\Ilim a5, which plays the role of the variance of the random

variables in the limiting field, exists. There is a similarga scale limit in this case
as in Theorem 8.5, the only difference is that the normingstamt in this case is
An = NY/2L(N)Y/2. This result has the consequence that if the conditions ef Th
orem 82 hold with the only difference thdta = v instead ofka < v, then the
large scale limit exists with norming constam{g = N"/ZL(N) with an appropri-
ate slowly varying functiori(-), and it consists of independent Gaussian random
variables with expectation zero.

The proof of Theorem 8.5 and its generalization that we didforonulate here
explicitly appeared in paper [3]. | omit its proof, | only nekome short explanation
about it.

In the proof we show that all moments of the random variaBfg€onverge to
the corresponding moments of the random variafeasN — . The moments of
the random variableg) can be calculated by means of the diagram formula if we
either rewrite them in the form of a Wienerélintegral or apply a version of the
diagram formula which gives the moments of Wick polynomiattead of Wiener—
Itd integrals. In both cases the moments can be expresseditxply means of the
correlation function of the underlying Gaussian randondfidhe most important
step of the proof is to show that we can select a special ssbofdclosed) diagrams,
called regular diagrams in [3] which yield the main conttibn to the moment
E(zN)M, and their contribution can be simply calculated. The dbuation of all
remaining diagrams is(1), hence it is negligible. For the sake of simplicity let us
restrict our attention to the cast(x) = Hi(x), and let us explain the definition of
the regular diagrams in this special case.

If M is an even number, then take the partitigkg ko }, {kz,ka},..., {km—1.km }
of the set{1,...,M} to subsets consisting of exactly two elements, to define the
regular diagrams. They are those (closed) diagrams forhwhé&can choose one of
the above partitions in such a way that the diagram contailseslges connecting
vertices from theky;_1-th andky;-th row with some I< j < M where{kzj_1,koj }
is an element of the partition we have choserMIfs an odd number, then there is
no regular diagram.

In Theorems 8.2 and.8 we investigated some very special subordinated fields.
The next result shows that the same limiting field as the ofidn@orem 8.2 appears
in a much more general situation.

Let us define the field
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21 ; )
&= Z{ﬂ/el(mﬁmﬂl)aj (X1,...,Xj) Za(dx1) ... Zg(dxj), neZy, (8.30)
=3k

whereZg is the random spectral measure adapted to a GaussiarXfietde Z,,
with correlation function satisfying (8.1) withQ a < .

Theorem 8.6.Let the fields & be defined by formulae (8.30) and (8.1) witk A
NV—ka/2 (N)*/2, The multi-dimensional distributions of the field§ #nd to those
of the fielday(0,...,0)Z} where the field Z is the same as in Theorem 8.2 if the
following conditions are fulfilled:

() ok(xa,...,%) is a bounded function, continuous at the origin, and such tha
ak(0,...,0) #0.
(i)

2

X1 XJ)’2 1 (/N xq X))

a (2, XLy dimar
'(N’ "N/ N2V jezBN

0

GN(dX]_)...GN(de) —>0,

® 1 N-(i—ka
2 T

where G is defined in (8.2).

Proof of Theorem 8.6The proof is very similar to those of Theorem 8.2 an? .8
The same argument as in the proof of Theore@ 8hows that because of condi-
tion (ii) &, can be substituted in the present proof by the following esgion:

Er/] = k—]; /.ei(”*xﬁ”'*xk)ak(xl, X0 Za(dX) ... Zg(dX), nNEZy.
Then a natural modification in the proof of Theorem 8.2 ingplidheorem 8.6. The

main point in this modification is that we have to substitiie measuregy defined
in formula (8.15) by the following measuge:

A = g (2 K\
HN(A) _I/";|KN(X17'”7XK)‘ ‘ak(Na"wN)’ GN(Xm)GN(ka)7
Ae B,

and to observe that because of condition (i) the limit refatin — Lo implies that
in % (0., 0)Pho. O

The main problem in applying Theorem 8.6 is to check condgi@) and (ii).
We remark without proof that any fiel§, = H(Xsl+n7...,xsp+n), S1,...,Sp € Zy
andn € Z,, for whichE&? < « satisfies condition (ii). This is proved in Remark 6.2
of [9]. If the conditions (i) or (ii) are violated, then a limof different type may
appear.

Finally we quote such a result without proof. Actually thegiris similar to
that of Theorem 8.2. At this point the general formulatiobemma 8.3 is useful.



108 8 Non-central Limit Theorems

(See [25] for a proof.) Here we restrict ourselves to the aasel. The limiting
field appearing in this result belongs to the class of sefifar fields constructed in
Remark 6.5.

Letay,n=...,—1,0,1,..., be a sequence of real numbers such that

an=C(H)nP~14o(nB-1) ifn>0

an=C(2)|n| P~ 14o(n|"B-1) ifn<0 -l<p<il (8.31)

Let X,, n=...,—1,0,1,..., be a stationary Gaussian sequence with correlation
functionr(n) = EXoXy = |n|~9L(|n|), 0< a < 1, whereL(-) is a slowly varying
function. Define the field,,n=...,—-1,0,1,..., as

[oe]

&= anH(Xmin)- (8.32)

m=—oo

Theorem 8.7.Let a sequencé,, n=...,—10,1,..., be defined by (8.31) and
(8.32). Le0< ka <1,0<1-B— ‘ga < 1, and let one of the following conditions
be satisfied.

(& 0<pB<1land E a,=0.
(b) 0>B>-1
(c) B=0,C(1)=-C(2),and Zo|an+aLn| < oo,

Let us define the sequence &y formula (1.1) with £ = N*~A~*a/2| (N)¥/2 and
the above defined fielf}. The multi-dimensional distributions of the sequendgs Z
tend to those of the sequences'®;(a, B,a,b,c), where

Zy(a,Bkb.0) = [ Falat %)
{b\xl o X P ic]x 4 - i Psign(xg 4+ xk)}
e | @2 x| OTD2W () W (),

W(-) denotes the white noise field, i.e. a random spectral measomespond-
ing to the Lebesgue measure, and the constants D, b and ¢ éredes D=
2 (a)cog §m), and

b= 2[C(1)+C(2)]I (—B)sin(E52 1), and c=2[C(1) ~C(2)]r (~B) cog B2 m)
in cases (a) and (b), and
b= 3 an and c=C(1) in case (c).



Chapter 9
History of the Problems: Comments

Chapter 1.

In statistical physics the problem formulated in this cleapippeared at the investi-
gation of some physical models at critical temperature.s&assion of this problem
and further references can be found in the fourth chapteneofarthcoming book
of Ya. G. Sinai [34]. (Here and in the later part of Chapter 9dicknot change the
text of the first edition. Thus expressions like forthcombwpk, recent paper, etc.
refer to the time when the first version of this Lecture Notpesgred.) The first ex-
ample of a limit theorem for partial sums of random variallbgch is considerably
different from the independent case was given by M. Roséninld29]. Further
results in this direction were proved by R. L. Dobrushin, sken and F. Spitzer,
P. Major, M. Rosenblatt and M. S. Tagqu [7], [8], [9], [25].003 [31], [35], [38].
In most of these papers only the one-dimensional case isd=oeg, i.e. the case
whenR’ = R!, and it is formulated in a different but equivalent way. Inshof

Nt
these works the joint distribution of the random variatAgs 5 &j, 0<t < », was
j=1

considered.

Similar problems also appeared in the theory of infinite iplertsystems. The
large-scale limit of the so-called voter model and of inénfarticle branching
Brownian motions were investigated in papers [2], [6], [1&¥]. It was proved
that in these models the limit is a Gaussian self-similadfigth a non-typical nor-
malization. The investigation of the large-scale limit Wbbe very natural for many
other infinite particle systems, but in most cases this jgrobs hopelessly difficult.

The notion of subordinated fields in the present context fipgieared at Do-
brushin [7]. It is natural to expect that there exists a lactgss of self-similar
fields which cannot be obtained as subordinated fields. Nedess the present
techniques are not powerful enough for finding them.

The approach to the problem is different in statistical jptg/sin statistical
physics one looks for self-similar fields which satisfy soooaditions formulated
in accordance to physical considerations. One tries toritesthese fields with the
help of a power series which is the Radon—Nykodim derivatif/¢he field with

109
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respect to a Gaussian field. The deepest result in this girets a recent paper
of P. M. Bleher and M. D. Missarov [1] where the required folimpewer series is
described. This result enables one to calculate sevetigiatindices interesting for
physicists, but the task of proving that this formal expi@ssdefines an existing field
seems to be very hard. It is also an open problem whether éiss of self-similar
fields constructed via multiple Wienerélintegrals contains the non-Gaussian self-
similar fields interesting for statistical physics. Someests are very skeptical in
this respect. The Gaussian self-similar fields are invatgiin [7] and [33]. A more
thorough investigation is presented in [11].

The notion of generalized random fields was introduced by .|.Qdlfand. A
detailed discussion can be found in the book [16], where thpgsties of Schwartz
spaces we need can also be found.

In the definition of generalized fields the class of test fiomg.~ can be substi-
tuted by other linear topological spaces consisting ofvakled functions. The most
frequently considered space, beside the spéacés the space” of infinitely many
times differentiable functions with compact support. Irp@a[7] Dobrushin also
considered the spac#" C ., which consists of the functiong € .7 satisfying
the additional relatiorf X't ... x")! ¢ (x) dx= 0, provided thafj; + -+ j, <.
He considered this class of test functions, because themaach more continuous
linear functionals over”" than over.s”, and this property of”" can be exploited
in certain investigations. Generally no problem arisehagroofs if the space of
test functions¥ is substituted by”" or 2 in the definition of generalized fields.

Two generalized fieldX(¢) andX(¢) can be identified iX(¢) 4 X(¢) for all
¢ € .. Let me remark that this relation also implies that the radilthensional
distributions of the random vecto(X(¢1),...,X(¢n)) and(X(¢1),...,X(¢n)) co-
incide for all¢1,.... ¢, € .. As.” is a linear space, this relation can be deduced
from property (a) of generalized fields by exploiting thabtdistribution functions
on R" agree if and only if their characteristic functions agree.

Let.”’ denote the space of continuous linear functionals o¥eand lete/, be
the g-algebra over?’ generated by the sef§¢,a) = {F: F € .v';, F(¢) < a},
where¢ € .7 anda e_Rl are arbitrary. Given a probability spa¢e”’, «7,,P), a
generalized fiel&K = X(¢) can be defined on it by the formu¥(¢)(F) = F(¢),
¢ € .7, andF € . The following deep result is due to Minlos (see e.g. [16]).

Theorem. (Minlos.)Let(X(¢), ¢ €.) be a generalized random field. There exists
a probability measure P on the measurable spagg <7y) such the generalized
fieldX = (X(¢), ¢ €.7) defined on the probability spa¢g, <7, P) by the formula

X(9)(F)=F(¢), ¢ € .7, F €., satisfies the relation ¥ ) 2 X(¢) forall ¢ e
.

The generalized field has some nice properties. Namely property (a) in the def-
inition of generalized fields holds for &l € .”. MoreoverX satisfies the following
strengthened version of property (b):

(b)) limX(¢n) = X(¢) in every point- € .7 if ¢, — ¢ in the topology of#.
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Because of this nice behaviour of the fiédd$ ) most authors define generalized
fields as the version¥ defined in Minlos’ theorem. Since we have never needed
the extra properties of the field we have deliberately avoided the application of
Minlos’ theorem in the definition of generalized random feellinlos’ theorem
heavily depends on some topological propertiesgfnamely that? is a so-called
nuclear space. Minlos’ theorem also holds if the space ofudestions is substituted
by 2 or " in the definition of generalized fields.

Let us finally remark that Lamperti [22] gave an interestihg@racterization of
self-similar random fields. LeX(t), t € R%, be a continuous time stationary random

process, and define the random procésy = X({?ng, t > 0, with somea > 0.

Then, as it is not difficult to see, the random proce¥gs t > 0, anle(J‘O‘,t) ,1>0,
have the same finite dimensional distributions forua# 0. This can be interpreted
so thatY (t) is a self-similar process with parameter> 0 on the half-linet > 0.
Contrariwise, if the finite dimensional distributions oétprocesse¥(t) and Yf;,“,

t > 0, agree for alli > 0, then the process$(t) = @,t € RY, is stationary. These

relations show some connection between stationary andiseilar processes. But
they have a rather limited importance in the investigatifthis work, because here
we are really interested in such random fields which are sanabusly stationary
and self-similar.

Chapter 2.

Wick polynomials are widely used in the literature of st physics. A detailed
discussion about Wick polynomials can be found in [12]. Teets 2A and 2B are
well-known, and they can be found in the standard literatireeorem 2C can be
found e.g. in Dynkin’s book [14] (Lemma 1.5). Theorem 2.1liedo Segal [32]. It
is closely related to a result of Cameron and Martin [4]. Témarks at the end of
the chapter about the content of formula 2.1 are relatedap [2

Chapter 3.

Random spectral measures were independently introducedréaper and Kol-
mogorov [5], [21]. They could have been introduced by meanStone’s theo-
rem about the spectral representation of one-parametepgiaf unitary operators.
Bochner’s theorem can be found in any standard book on fumaitianalysis, the
proof of the Bochner—Schwartz theorem can be found in [16f.rhe remark that
the same result holds true if the space of test functighis substituted byz.

There is an object, called the fractional Brownian motiothjcli is a popular
topic of many investigations, and which can be studied bynaed the method of
this chapter. In particular, the results of Chapter 3 impBitexistence. A fractional
Brownian motion with Hurst parametét, 0 < H < 1, is a Gaussian proceXst),

t > 0, with continuous trajectories and zero expectationEX(t) = 0 for allt > 0,
and with covariance functioRy (s,t) = EX(s)X(t) = 3(s™ +t?H — |t — 1) for
all 0 <sjt <. Letus explain that the correlation of a fractional Browniotion
has a natural representation as the correlation functidineodliscretized version of
an appropriately defined Gaussian stationary generaligiégimilar field. In the
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subsequent argument the representation of (generali®rary Gaussian fields
turned out to be very useful.

To find this representation observe that a fractional Brawmnotion with Hurst
parameterH has the self-similarity propertX(ag)X (at) = a®EX(s)X(t) for
all a > 0, and simple calculation shows that it also has the follgwétation-
ary increments propertye [X(s+ u) — X (u)][X(t + u) — X(u)] = EX(s)X(t) for all
0 <s,t,u< . Hence we can construct a fractional Brownian mogdh) by defin-
ing first an appropriate stationary, Gaussian generaligdfdssnilar field X(¢),
¢ € .1 in the space of the real valued functions of the Schwartzespaed then
by extending it to a larger parameter set (of functions),ta@imimg the indicator
functionsy|o,) of the intervalg0,t] for all t > 0. Finally we define the proce3qt)
asX(t) = X(Xpz)-

More explicitly, let us define for a parameterthe stationary generalized Gaus-
sian fieldX(¢), ¢ 71, with zero expectation and spectral density 2%, i.e. put
EX(¢)X() = [ &(u)@(u)|u -2 du, and introduce its (discretized) extension to a
function space containing the functiogg, for allt > 0. Then we have

jsu itu
EX(Xos)X(Xox) = [ Fos(Wioglul *du= [T yanqy
provided that these integrals are convergent.

The above defined generalized fields existaf 2 —1, and their discretized ex-
tension exists i1 < 2a < 1. The first condition is needed to guarantee that the
singularity of the integrand in the formula expressing tbheaciance function is not
too strong in the origin, and the second condition is needegliirantee that the
singularity of this integrand is not too strong at the infirétven in the discretized
case.

Simple calculation shows that the covariance function efahove defined ran-
dom field satisfies the identitEX ()X (Wa) = a~TH2DEX(¢)X (), with the
functions@a(x) = ¢ (ax), Ya(x) = Y(ax), and similarly, we havé& X(as)X (at) =
all+20EX(s)X(t) for alla> 0. Besides, the Gaussian stochastic pro¥ésst > 0,
has stationary increments, iEe[X(s+u) — X (u)][X(t+u) — X(u)] = EX(s)X(t) for
all 0 < st,u < . This follows from its construction with the help of a stat#oy
Gaussian random field.

The above calculations imply that with the choime= H — 1/2 we get the co-
variance function of a fractional Brownian motion with HuparameteH for all
0 < H < 1, more precisely the correlation function of this proceastiplied by
an appropriate constant. Indeed, it follows from the stetig increments property
of the process thaE(X(t) — X(s))? = EX(t —)?, if t > s, and the self-similarity
property of this process implies thEX(s)X(t) = S[EX(s)? + EX(t)% — E(X(t) —
X(9))?) = ZEX(1)?[s +17H — |t — ],

Actually the results of Chapter 3 also provide a represimtaif this process by
means of an integral with respect to a random spectral meathis representation
has the form

itu __
xa):/é . L2040,
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with the random spectral measw#é) corresponding to the Lebesgue measure on
the real line. Here we omit the proof that such a stochasticgss also has a version
with continuous trajectories.

Chapter 4.

The stochastic integral defined in this chapter is a versidhai introduced by &

in [19]. This modified integral first appeared in Totoki'stee note [39] in a special
form. Its definition is a little bit more difficult than the defiion of the original
stochastic integral introduced bybltbut it has the advantage that the effect of the
shift transformation can be better studied with its helpsiesults of this chapter
can be found in Dobrushin’s paper [7]. The definition of Wie#t integrals in the
case when the spectral measure may have atoms is new. Invthesngion of this
lecture note | worked out many arguments in a more detailed than in the old
text. In particular, in Lemma 4.1 | gave a much more detaiblgolanation of the
statement that all kernel functions of Wieneg-tegrals can be well approximated
by simple functions.

Chapter 5.

Proposition 5.1 was proved for the original Wienebd-lhtegrals by 1 in [19].
Lemma 5.2 contains a well-known formula about Hermite poiyrals. The main
result of this chapter, Theorem 5.3, appeared in Dobrushiark [7]. The proof
given there is not complete. Several non-trivial detaiés@nitted. | felt even neces-
sary to present a more detailed proof in this note when | wdoten its new version.
Theorem 5.3 is closely related to Feynman'’s diagram formihe result of Corol-
lary 5.5 was already known at the beginning of the XX. centlinyas proved with
the help of some formal manipulations. This formal caldatatwas justified by
Taqqu in [36] with the help of some deep inequalities. In tlee/version of this
note | formulated a more general result than in the older Bieee | gave a formula
about the expectation of products of Wick polynomials antardy of Hermite
polynomials.

| could not find results similar to Corollaries 5.6 and 5.7ha titerature of prob-
ability theory. On the other hand, such results are wellkmmn statistical physics,
and they play an important role in constructive field thedrysharpened form of
these results is Nelson’s deep hypercontractive inegqu@8], which | formulate
below.

LetX,t €T, andYy,t' € T’ be two sets of jointly Gaussian random variables on
some probability spacg2,.«7,P) and(Q, «7’,P’). Let 74 and.»#] be the Hilbert
spaces generated by the finite linear combinatipegX;; andzchth. Let us de-
fine the g-algebras# = o(X%,t € T) and &' = o(Yy,t’ € T') and the Banach
spaced p(X) = Lp(Q,8,P), Lp(Y) =Lp(Q",%#',P'), 1< p< . LetAbe alinear
transformation froms#; to .77, with norm not exceeding 1. We define an operator
I (A): Lp(X) = Ly(Y) forall 1 < p,p’ <« in the following way. Ifn) is a homo-
geneous polynomial of the variablg

t,ets v j
n= Zlelessxgll .. ~X{JSS, t,...,ts€ T,
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then , ,
FA)n: =5 Gl (A (A%

1yenl)s”
It can be proved that this definition is meaningful, f&€A): n: does not depend
on the representation af, andl” (A) can be extended to a bounded operator from
L1(X) to L1(Y) in a unique way. This means in particular thgtA) & is defined for
all & € Lp(X), p> 1. Nelson’s hypercontractive inequality says the follogvinetA
be a contraction fron¥ to 777 . Then[l" (A) is a contraction fromq(X) to Ly(Y)
for 1 < q< pprovided that

q—1\Y2
= (3=3) ©1)

If (9.1) does not hold, thefi (A) is not a bounded operator frobg(X) to Lp(Y).

A further generalization of this result can be found in [17].

The following discussion may help to understand the refaltietween Nelson’s
hypercontractive inequality and Corollary 5.6. Let us gggelson’s inequality in
the special case wheix;,t € T) = (Yy,t' € T') is a stationary Gaussian field with
spectral measur@, g = 2, p = 2m with some positive integen, A= c-Id, where
Id denotes the identity operator, and= (2m— 1)~%2, Let .#° and .#° be the
complexification of the real Hilbert spacegg” and.7#, defined in Chapter 2. Then
Lo(X) = ¢ = 5 + #+--- by Theorem 2.1 and formula 2.1. The operator
I (c-1d) equalsc” - 1d on the subspace#?. If h, € 22, thenlg(h,) € %, hence
the application of Nelson’s inequality for the operafoe c- Id shows that

1/2m 1/2m 1/2

(El(hn)?™) ¢ " (E(T (c-1d)lg(hn))®™) 77" < ¢ " (Elg(hn)?)

Elo(hn)™" < ¢ (Elo(n)?)" = (2m—1)™ (Ele(hn)) "

This inequality is very similar to the second inequality inrGllary 5.6, only the
multiplying constants are different. Moreover, for langethese multiplying con-
stants are near to each other. | remark that the followindgeugad form of Nelson’s
inequality could be deduced relatively easily from Conglla.6. LetA: 75 — ¢
be a contractiofA|| = ¢ < 1. Then there exists p= p(c) > 2 such that” (A) is a
bounded operator fror; (X) to L,(Y) for p < p. This weakened form of Nelson’s
inequality is sufficient in many applications.

Chapter 6.

Theorems 6.1, 6.2 and Corollary 6.4 were proved by DobrusHif]. Tagqu proved

similar results in [37], but he gave a different represéatatTheorem 6.6 was
proved by H. P. Mc.Kean in [27]. The proof of the lower boun@sisome ideas
from [15]. Remark 6.5 is from [25]. As Proposition 6.3 alsdlicates, some non-
trivial problems about the convergence of certain integralist be solved when
constructing self-similar fields. Such convergence pmoisleare common in statis-
tical physics. To tackle such problems the so-called powentng method (see
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e.g. [23]) was worked out. This method could also be apphidHis chapter. Part (b)
of Proposition 6.3 implies that the self-similarity paraerer cannot be chosen in a
larger domain in Corollary 6.4. One can ask about the belbawifithe random vari-
ablesé; and¢ (¢) defined in Corollary 6.4 if the self-similarity parametertends
to the critical value%. The variance of the random variablgsandé& (¢) tends to
infinity in this case, and the field§, j € Zy, and&(¢), ¢ € .7, tend, after an ap-
propriate renormalization, to a field of independent norraatlom variables in the
discrete, and to a white noise in the continuous case. Thaf pfohese results with
a more detailed discussion appeared in [10].

In a recent paper [20] Kesten and Spitzer have proved a lmeibrem, where
the limit field is a self-similar field which seems not to bedaio the class of self-
similar fields constructed in Chapter 6. (We cannot howexserude the possibility
that there exists some self-similar field in the class definditheorem 6.2 with the
same distribution as this field, although it is given by a ctatgdy different form.)
This self-similar field constructed by Kesten and Spitzeéhéonly rigorously con-
structed self-similar field known for us that does not beltmthe fields constructed
in Theorem 6.2. | describe this field, and then | make some camtsn

Let B1(t) andB;(t), —e0 <t < 0, be two independent Wiener processes. (We say
thatB(t) is a Wiener process on the real lingsift), t > 0, andB(—t),t > 0, are two
independent Wiener processes.) Kék,t1,t2), X € RL t; < tp, denote the local time
of the proces®; at the pointx in the intervalft;, t2]. The one-dimensional field

Zn= /K(x,n,n+1) Bx(dx), n=...,—-10,1,...,
where the integral in the last formula is ab integral, is a stationary self-similar
field with self-similarity paramete%.
To see the self-similarity property one has to observe that

K(AY2x, Aty Atp) 2 AY2K (x,ty,tp)  forallxe R, ty <tp, andA >0

because of the relatidBy (Au) 2 AL/2B, (u). Hence
n-1 . .
Z)Zj 4 nl/z/ K(nY/2x,0,1)By(dx) £ n¥/4 / K(x,0,1) Bz(dx) = n®4Z,.
P .

The invariance of the multi-dimensional distributionstod fieldZ, under the trans-
formation (1.1) can be seen similarly.
To see the stationarity of the fiel} we need the following two observations.

(@ K(xst) £ K(x+n(s),0,t —s) with n(s) = —B1(—s). (The form ofn is not
important for us. What we need is that the pajrK) is independent oB,.)
(b) If a(x), —e0 < X< =, is a process independent®y, then

/‘a(X—f—U)Bz(dX)é/‘G(X)Bz(dX) forallue RL.
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It is enough to show, because of Property (a) that

/K(x+n(s),o,t —9)By(dx 2 /K(x, 0,t — ) Bo(dX).

This relation follows from property (b), because the condil distributions of the
left and right-hand sides agree under the conditj¢s) = u, u € RL.
The generalized field version of the above figlds the field

7(¢) = _/ [K(x,o,t)‘:;f dt] Bo(dX), ¢ .7

To explain the analogy between the figlgandZ(¢) we remark that the kernel of
the integral defining, can be written, at least formally, as

d
Koomn+1) = [ Xnnen (WG Km0 du

althoughK is a non-differentiable function. Substituting the funetix|, .1y by

¢ € .7, and integrating by parts (or precisely, considerg‘ﬂg as the derivative of
a distribution) we get the above definition2fg).

Using the same idea as before, a more general class of sslfusiields can
be constructed. The integradx,n,n+ 1) can be substituted by the local time of
any self-similar field with stationary increments which iglépendent oB,. Nat-
urally, it must be clarified first that this local time reallyigts. One could enlarge
this class also by integrating with respect to a self-sinfield with stationary in-
crements, independent Bf. The integral with respect to a field independent of the
field K(x,s,t) can be defined without any difficulty.

There seems to be no natural way to represent the above raieldmas ran-
dom fields subordinated to a Gaussian random field. On the btrel, the local
timesK(x,s,t) are measurable with respectBg, they have finite second moments,
therefore they can be expressed by means of multiple Widbantegrals with re-
spect to a white noise field. Then the procggstself can also be represented via
multiple Wiener—Id integrals. It would be interesting to know whether the a&ov
defined self-similar fields, and probably a larger class Gfsmilar fields, can be
constructed in a simple natural way via multiple Wiendy-Hitegrals with the help
of a randomization.

Chapter 7.

The definition of Wiener—i integrals together with the proof of Theorem 7.1 and
Proposition 7.3 were given bydtin [19]. Theorem 7.2 is proved in Taqqu’s pa-
per [38]. He needed this result to show that the self-sinfiédds defined in [9] by
means of Wiener-& integrals coincide with the self-similar fields defined 8]

by means of modified Wienerdlintegrals.
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Chapter 8.

The results of this chapter, with the exception of TheorerBsa8d 8.7 are proved
in [9]. Theorem 8.5 is proved in [3] and Theorem 8.7 in [25]eTatter paper was
strongly motivated by [30]. Lemma 8.3 is formulated in a mgemeral form than
Lemma 3 in [9]. The present formulation is more complicated,it is more useful
in some applications. Let me explain this in more detail. @ifeerence between
the original and the present formulation of this lemma i$ teae we allow that the
integrandKg in the limiting stochastic integral is discontinuous on aafirubset
of R%, and the function&y may not converge on this set. This freedom can be
exploited in some applications. Indeed, let us consider tag self-similar fields
constructed in Remark 6.5. In cape< O the integrand in the formula expressing
these fields is not continuous on the hyperplane - - - + x, = 0. Hence, if we want
to prove limit theorems where these fields appear as the kmé this happens e.g.
in Theorem 8.7 then we can apply Lemma 8.3, but not its origi@ision, Lemma 3
in [9].

The example for non-central limit theorems given by Rosattli [29] and its
generalization by Taqqu in [35] are special cases of The@&nin these papers
only the special casdy(x) = x> — 1 is considered. Later Tagqu [38] proved a result
similar to Theorem &', but he needed more restrictive conditions. The obseivatio
that Theorem &’ can be deduced from Theorem 8.2 is from Tagqu [35].

The method of [29] and [35] does not apply for the proof of Tiee 8.2 in the
case ofHy(x), k > 3. In these papers it is proved that the moments of the random
variablesz) converge to the corresponding momentsZpf (Actually a different
but equivalent statement is established in these papéengs)cbnvergence of the

moments implies the convergenzg 2, Z; if and only if the distribution ofZ;; is
uniquely determined by its moments.

Theorem 6.6 implies that thex2h moment of &-fold Wiener—Id integral be-
haves similarly to the &+the moment of a Gaussian random variable with zero ex-
pectation, it equals(knogn/2+0() Hence some results about the so-called moment
problem show that the distribution ofkafold Wiener—Io integral is determined by
its moments only fok = 1 andk = 2. Therefore the method of moments does not
work in the proof of Theorem 8.2 fdtl(x), k > 3.

Throughout Chapter 8 | have assumed that the correlatiactibmof the under-
lying Gaussian field to which our fields are subordinatedgas formula (8.1). This
assumption seems natural, since it implies that the spect@sure of the Gaussian
field satisfies Lemma 8.1, and such a condition is needed &ggns substituted
by Zg, in the limit. It can be asked whether in Theorem 8.2 formuladan be sub-
stituted by the weaker assumption that the spectral meaguhe Gaussian field
satisfies Lemma 8.1. This question was investigated in &edtof [9]. The investi-
gation of the moments shows that the answer is negative.€gs®n for it is that the
validity of Lemma 8.1, unlike that of Theorem 8.2, does nqieted on whether the
spectral measur@ has large singularities outside the origin or not. The dis@mn
in [9] also shows that the Gaussian case, that is the casegigh= Hi(X) = xin
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Theorem 8.2, is considerably different from the non-Gaussase. A forthcoming
paper of M. Rosenblatt [31] gives a better insight into thevabquestion.

The limiting fields appearing in Theorem 8.2 and 8.6 belorgdpecial subclass
of the self-similar fields defined in Theorem 6.2. These tesntlicate that the self-
similar fields defined in formula (6.7) have a much greategeaof attraction if
the homogeneous functiofy in (6.7) is the constant function. The reason for the
particular behaviour of these fields is that the constanttfan is analytic, while
a general homogeneous function typically has a singulatitthe origin. A more
detailed discussion about this problem can be found in [25].
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Abstract:
Chapter 1

We formulate the main problems discussed in this paperhegetith the most im-

portant notions needed in their discussion. In particul@rjntroduce the notion of
generalized random fields and also explain at a heuristal lgtay their introduc-

tion is useful for us. We finish this chapter with a sub-chagitat contains a short
summary about some useful results in the theory of genedhfimctions.

Chapter 2

We introduce the notion of Wick polynomials which are nakumnalti-variate ver-
sions of Hermite polynomials. We present their most imparaoperties, and with
their help we give a decomposition of the Hilbert space ofsgintegrable random
variables measurable with respect to a stationary Gausaiaiom field to the direct
sum of orthogonal, shift invariant subspaces.

Chapter 3

We present the correlation function of a Gaussian statjofiald as the Fourier

transform of a spectral measure and construct with its h€lpaaissian) random

spectral measure. Then we express a stationary Gaussiitsadf as the Fourier

transform of this random spectral measure. We also desthidbenost important

properties of spectral and random spectral measures. Bloésgreavily depend on

a classical result of analysis about the representation-cb#ied positive definite

functions as the Fourier transform of positive measurearit version about gen-
eralized functions. Hence we finish this chapter with a dudypter where we discuss
these results, called Bochner and Bochner—Schwartz thmsarethe literature.

Chapter 4

Here we introduce the multiple Wienergiintegrals with respect to a Gaussian ran-
dom spectral measure and prove some important results tisont

Chapter 5

Here we prove the most important result about multiple Wieh@ integrals, the

so-called diagram formula together with some of its conseqges. In the diagram
formula we rewrite the product of Wienerélintegrals in the form of a sum of
Wiener-I integrals and also give a formula (with the help of somerdiats) about

the calculation the kernel-functions of the integrals apjpey in this sum.

Chapter 6

We give a complete characterization of the so-called subated random fields of a
stationary Gaussian random field. This result enables usistiuict new, non-trivial
(subordinated) self-similar random fields, i.e. such randields which may appear
as the limit random field in limit theorems. To tell whethee ttormulas defining
these subordinated random fields are meaningful or not we foestecide whether
certain classical integrals are convergent or divergeahdd this chapter contains
some results in this direction.
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Chapter 7.

Here we discuss the original Wiene@-ihtegrals with respect to a random orthogo-
nal measure. We give their most important properties aramkssent some results
about their relation to the Wieneraélintegrals with respect to a random spectral
measure and to the classicd Ihtegrals of stochastic processes.

Chapter 8.

Here we present some non-trivial limit theorems where tiné is a non-Gaussian
self-similar field. The results of the previous chapters reaglain at a heuristic
level why such results should hold. But a rigorous proof dessanuch extra work
whose consequences may be interesting in themselves.

Chapter 9.

Here we summarize the content of the previous chapters. Ylaiaxhe history of
the results, give the necessary references to them, andlialsgss the underlying
motivations. We also present some results which are retatéioe subject of this
work only in an indirect way, but they give a better insighbiit.



