7,593 research outputs found

    Gauge theory on nonassociative spaces

    Full text link
    We show how to do gauge theory on the octonions and other nonassociative algebras such as `fuzzy R4R^4' models proposed in string theory. We use the theory of quasialgebras obtained by cochain twist introduced previously. The gauge theory in this case is twisting-equivalent to usual gauge theory on the underlying classical space. We give a general U(1)-Yang-Mills example for any quasi-algebra and a full description of the moduli space of flat connections in this theory for the cube Z23Z_2^3 and hence for the octonions. We also obtain further results about the octonions themselves; an explicit Moyal-product description of them as a nonassociative quantisation of functions on the cube, and a characterisation of their cochain twist as invariant under Fourier transform.Comment: 24 pages latex, two .eps figure

    Towards Spinfoam Cosmology

    Get PDF
    We compute the transition amplitude between coherent quantum-states of geometry peaked on homogeneous isotropic metrics. We use the holomorphic representations of loop quantum gravity and the Kaminski-Kisielowski-Lewandowski generalization of the new vertex, and work at first order in the vertex expansion, second order in the graph (multipole) expansion, and first order in 1/volume. We show that the resulting amplitude is in the kernel of a differential operator whose classical limit is the canonical hamiltonian of a Friedmann-Robertson-Walker cosmology. This result is an indication that the dynamics of loop quantum gravity defined by the new vertex yields the Friedmann equation in the appropriate limit.Comment: 8 page

    Almost commutative Riemannian geometry: wave operators

    Full text link
    Associated to any (pseudo)-Riemannian manifold MM of dimension nn is an n+1n+1-dimensional noncommutative differential structure (\Omega^1,\extd) on the manifold, with the extra dimension encoding the classical Laplacian as a noncommutative `vector field'. We use the classical connection, Ricci tensor and Hodge Laplacian to construct (\Omega^2,\extd) and a natural noncommutative torsion free connection (∇,σ)(\nabla,\sigma) on Ω1\Omega^1. We show that its generalised braiding \sigma:\Omega^1\tens\Omega^1\to \Omega^1\tens\Omega^1 obeys the quantum Yang-Baxter or braid relations only when the original MM is flat, i.e their failure is governed by the Riemann curvature, and that \sigma^2=\id only when MM is Einstein. We show that if MM has a conformal Killing vector field τ\tau then the cross product algebra C(M)⋊τRC(M)\rtimes_\tau\R viewed as a noncommutative analogue of M×RM\times\R has a natural n+2n+2-dimensional calculus extending Ω1\Omega^1 and a natural spacetime Laplacian now directly defined by the extra dimension. The case M=R3M=\R^3 recovers the Majid-Ruegg bicrossproduct flat spacetime model and the wave-operator used in its variable speed of light preduction, but now as an example of a general construction. As an application we construct the wave operator on a noncommutative Schwarzschild black hole and take a first look at its features. It appears that the infinite classical redshift/time dilation factor at the event horizon is made finite.Comment: 39 pages, 4 pdf images. Removed previous Sections 5.1-5.2 to a separate paper (now ArXived) to meet referee length requirements. Corresponding slight restructure but no change to remaining conten

    Bicrossproduct structure of the null-plane quantum Poincare algebra

    Full text link
    A nonlinear change of basis allows to show that the non-standard quantum deformation of the (3+1) Poincare algebra has a bicrossproduct structure. Quantum universal R-matrix, Pauli-Lubanski and mass operators are presented in the new basis.Comment: 7 pages, LaTe

    Braided Cyclic Cocycles and Non-Associative Geometry

    Full text link
    We use monoidal category methods to study the noncommutative geometry of nonassociative algebras obtained by a Drinfeld-type cochain twist. These are the so-called quasialgebras and include the octonions as braided-commutative but nonassociative coordinate rings, as well as quasialgebra versions \CC_{q}(G) of the standard q-deformation quantum groups. We introduce the notion of ribbon algebras in the category, which are algebras equipped with a suitable generalised automorphism σ\sigma, and obtain the required generalisation of cyclic cohomology. We show that this \emph{braided cyclic cocohomology} is invariant under a cochain twist. We also extend to our generalisation the relation between cyclic cohomology and differential calculus on the ribbon quasialgebra. The paper includes differential calculus and cyclic cocycles on the octonions as a finite nonassociative geometry, as well as the algebraic noncommutative torus as an associative example.Comment: 36 pages latex, 9 figure

    Controlling stress corrosion cracking in mechanism components of ground support equipment

    Get PDF
    The selection of materials for mechanism components used in ground support equipment so that failures resulting from stress corrosion cracking will be prevented is described. A general criteria to be used in designing for resistance to stress corrosion cracking is also provided. Stress corrosion can be defined as combined action of sustained tensile stress and corrosion to cause premature failure of materials. Various aluminum, steels, nickel, titanium and copper alloys, and tempers and corrosive environment are evaluated for stress corrosion cracking

    Braided Matrix Structure of the Sklyanin Algebra and of the Quantum Lorentz Group

    Full text link
    Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups Uq(g)U_q(g). They have the same FRT generators l±l^\pm but a matrix braided-coproduct \und\Delta L=L\und\tens L where L=l+Sl−L=l^+Sl^-, and are self-dual. As an application, the degenerate Sklyanin algebra is shown to be isomorphic to the braided matrices BMq(2)BM_q(2); it is a braided-commutative bialgebra in a braided category. As a second application, we show that the quantum double D(\usl) (also known as the `quantum Lorentz group') is the semidirect product as an algebra of two copies of \usl, and also a semidirect product as a coalgebra if we use braid statistics. We find various results of this type for the doubles of general quantum groups and their semi-classical limits as doubles of the Lie algebras of Poisson Lie groups.Comment: 45 pages. Revised (= much expanded introduction
    • …
    corecore