88 research outputs found
Household Livelihoods, Marketing And Resource Impacts: A Case Study Of Bark Products In Eastern Zimbabwe
An IES Working Paper.The bark of Warburgia salutaris, locally known as muranga, is a medicine of great traditional significance in Zimbabwe. However, trees of this species are at or near extinction in the wild in Zimbabwe. In this paper, the economics of the re-introduction of this rare medicinal species in some relatively moist, high altitude sites in south-eastern Zimbabwe are examined. The analysis builds on the information base provided by a recent pilot project of Warburgia re-introduction, as well as on market price data from a survey of current medicinal bark markets and on assumptions regarding the prospective future production and use of Warburgia leaves and bark by farmers and healers. The economic analysis, strongly suggests that expanded Warburgia production, at least on a small scale, in the remote, hilly region of southeastern Zimbabwe is very economically attractive and conducive to improving rural incomes and livelihoods of small-holders. This conclusion holds true in private feasibility terms, for both small-scale farmers and healer-growers, and in terms of social cost benefit analysis wherein seedling subsidies are removed.Funding for the study was provided by Canadian International Development Agency (CIDA) through the Agro-forestry Southern Africa project and the World Wide Fund for Nature (WWF) People and Plants Initiative
Molecular structure of the Discotic Liquid Crystalline Phase of Hexa-peri-Hexabenzocoronene/Oligothiophene Hybrid and their Charge Transport properties
Using atomistic molecular dynamics simulation we study the discotic columnar
liquid crystalline (LC) phases formed by a new organic compound having
Hexa-peri-Hexabenzocoronene (HBC) core with six pendant oligothiophene units
recently synthesized by Nan Hu et al. (N. Hu, R. Shao, Y. Shen, D. Chen, N. A.
Clark and D. M. Walba, Adv. Mater. 26, 2066, 2014). This HBC core based LC
phase was shown to have electric field responsive behavior and has important
application in organic electronics. Our simulation results confirm the
hexagonal arrangement of columnar LC phase with a lattice spacing consistent
with that obtained from small angle X-ray diffraction data. We have also
calculated various positional and orientational correlation functions to
characterize the ordering of the molecules in the columnar arrangement. The
molecules in a column are arranged with an average twist of 25 degrees having
an average inter-molecular separation of ~5 {\AA}. Interestingly, we find an
overall tilt angle of 43 degrees between the columnar axis and HBC core. We
also simulate the charge transport through this columnar phase and report the
numerical value of charge carrier mobility for this liquid crystal phase. The
charge carrier mobility is strongly influenced by the twist angle and average
spacing of the molecules in the column
Recommended from our members
Assisted partner notification services to augment HIV testing and linkage to care in Kenya: study protocol for a cluster randomized trial
Background: HIV case-finding and linkage to care are critical for control of HIV transmission. In Kenya, >50% of seropositive individuals are unaware of their status. Assisted partner notification is a public health strategy that provides HIV testing to individuals with sexual exposure to HIV and are at risk of infection and disease. This parallel, cluster-randomized controlled trial will evaluate the effectiveness, cost-effectiveness, and feasibility of implementing HIV assisted partner notification services at HIV testing sites (clusters) in Kenya. Methods/design Eighteen sites were selected among health facilities in Kenya with well-established, high-volume HIV testing programs, to reflect diverse communities and health-care settings. Restricted randomization was used to balance site characteristics between study arms (n = 9 per arm). Sixty individuals testing HIV positive (‘index partners’) will be enrolled per site (inclusion criteria: ≥18 years, positive HIV test at a study site, willing to disclose sexual partners, and never enrolled for HIV care; exclusion criteria: pregnancy or high risk of intimate partner violence). Index partners provide names and contact information for all sexual partners in the past 3 years. At intervention sites, study staff immediately contact sexual partners to notify them of exposure, offer HIV testing, and link to care if HIV seropositive. At control sites, passive partner referral is performed according to national guidelines, and assisted partner notification is delayed by 6 weeks. Primary outcomes, assessed 6 weeks after index partner enrollment and analyzed at the cluster level, are the number of partners accepting HIV testing and number of HIV infections diagnosed and linked to care per index partner. Secondary outcomes are the incremental cost-effectiveness of partner notification and the costs of identifying >1 partner per index case. Participants are closely monitored for adverse outcomes, particularly intimate partner violence. The study is unblinded due to practical limitations. Discussion This rigorously designed trial will inform policy decisions regarding implementation of HIV partner notification services in Kenya, with possible application to other parts of sub-Saharan Africa. Examination of effectiveness and cost-effectiveness in diverse settings will enable targeted application and define best practices. Trial registration ClinicalTrials.gov NCT01616420
Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts
Overview of ASDEX upgrade results in view of ITER and DEMO
Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98(p,y) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q-profile) were established on AUG and characterised concerning their plasma performance
The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling
We present the results of GENE gyrokinetic calculations based on a series of JET-ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of power and gas fuelling. We show that turbulence due to electron-temperature-gradient (ETGs) modes produces a significant amount of heat flux in four JET-ILW discharges, and, when combined with neoclassical simulations, is able to reproduce the experimental heat flux for the two low gas pulses. The simulations plausibly reproduce the high-gas heat fluxes as well, although power balance analysis is complicated by short ELM cycles. By independently varying the normalised temperature gradients (omega(T)(e)) and normalised density gradients (omega(ne )) around their experimental values, we demonstrate that it is the ratio of these two quantities eta(e) = omega(Te)/omega(ne) that determines the location of the peak in the ETG growth rate and heat flux spectra. The heat flux increases rapidly as eta(e) increases above the experimental point, suggesting that ETGs limit the temperature gradient in these pulses. When quantities are normalised using the minor radius, only increases in omega(Te) produce appreciable increases in the ETG growth rates, as well as the largest increases in turbulent heat flux which follow scalings similar to that of critical balance theory. However, when the heat flux is normalised to the electron gyro-Bohm heat flux using the temperature gradient scale length L-Te, it follows a linear trend in correspondence with previous work by different authors
Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas
The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp < 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations
A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.Confining plasma and managing disruptions in tokamak devices is a challenge. Here the authors demonstrate a method predicting and possibly preventing disruptions and macroscopic instabilities in tokamak plasma using data from JET
Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design
A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme
- …