454 research outputs found

    Wireless Double Micro-Resonator for Orientation Free Tracking of MR-Catheter During Interventional MRI

    Get PDF

    Special Issue on “Advances in Microfluidics Technology for Diagnostics and Detection”

    Get PDF
    In recent years microfluidics and lab-on-a-chip havecome to the forefront in diagnostics and detection [...

    Development and Experimental Assessment of a Model for the Material Deposition by Laser-Induced Forward Transfer

    Get PDF
    The potential to deposit minute amounts of material from a donor to an acceptor substrate at precise locations makes laser-induced forward transfer (LIFT) a frequently used tool within different research fields, such as materials science and biotechnology. While many different types of LIFT exist, each specialized LIFT application is based on a different underlying transfer mechanism, which affects the to-be-transferred materials in different ways. Thus, a characterization of these mechanisms is necessary to understand their limitations. The most common investigative methods are high-speed imaging and numerical modeling. However, neither of these can, to date, quantify the material deposition. Here, analytical solutions are derived for the contact-based material deposition by LIFT, which are based on a previously observed equilibrium state. Moreover, an analytical solution for the previously unrecognized ejection-based material deposition is proposed, which is detectable by introducing a distance between the donor and acceptor substrates. This secondary mechanism is particularly relevant in large scale production, since each deposition from a donor substrate potentially induces a local distance between the donor and acceptor substrates.Peer Reviewe

    Development and Experimental Assessment of a Model for the Material Deposition by Laser-Induced Forward Transfer

    Get PDF
    The potential to deposit minute amounts of material from a donor to an acceptor substrate at precise locations makes laser-induced forward transfer (LIFT) a frequently used tool within different research fields, such as materials science and biotechnology. While many different types of LIFT exist, each specialized LIFT application is based on a different underlying transfer mechanism, which affects the to-be-transferred materials in different ways. Thus, a characterization of these mechanisms is necessary to understand their limitations. The most common investigative methods are high-speed imaging and numerical modeling. However, neither of these can, to date, quantify the material deposition. Here, analytical solutions are derived for the contact-based material deposition by LIFT, which are based on a previously observed equilibrium state. Moreover, an analytical solution for the previously unrecognized ejection-based material deposition is proposed, which is detectable by introducing a distance between the donor and acceptor substrates. This secondary mechanism is particularly relevant in large scale production, since each deposition from a donor substrate potentially induces a local distance between the donor and acceptor substrates

    Distinct Roles of Tensile and Compressive Stresses in Graphitizing and Properties of Carbon Nanofibers

    Get PDF
    It is generally accepted that inducing molecular alignment in a polymer precursor via mechanical stresses influences its graphitization during pyrolysis. However, our understanding of how variations of the imposed mechanics can influence pyrolytic carbon microstructure and functionality is inadequate. Developing such insight is consequential for different aspects of carbon MEMS manufacturing and applicability, as pyrolytic carbons are the main building blocks of MEMS devices. Herein, we study the outcomes of contrasting routes of stress-induced graphitization by providing a comparative analysis of the effects of compressive stress versus standard tensile treatment of PAN-based carbon precursors. The results of different materials characterizations (including scanning electron microscopy, Raman and X-ray photoelectron spectroscopies, as well as high-resolution transmission electron microscopy) reveal that while subjecting precursor molecules to both types of mechanical stresses will induce graphitization in the resulting pyrolytic carbon, this effect is more pronounced in the case of compressive stress. We also evaluated the mechanical behavior of three carbon types, namely compression-induced (CIPC), tension-induced (TIPC), and untreated pyrolytic carbon (PC) by Dynamic Mechanical Analysis (DMA) of carbon samples in their as-synthesized mat format. Using DMA, the elastic modulus, ultimate tensile strength, and ductility of CIPC and TIPC films are determined and compared with untreated pyrolytic carbon. Both stress-induced carbons exhibit enhanced stiffness and strength properties over untreated carbons. The compression-induced films reveal remarkably larger mechanical enhancement with the elastic modulus 26 times higher and tensile strength 2.85 times higher for CIPC compared to untreated pyrolytic carbon. However, these improvements come at the expense of lowered ductility for compression-treated carbon, while tension-treated carbon does not show any loss of ductility. The results provided by this report point to the ways that the carbon MEMS industry can improve and revise the current standard strategies for manufacturing and implementing carbon-based micro-devices

    Facile template-free synthesis of multifunctional 3D cellular carbon from edible rice paper

    Get PDF
    Edible rice paper wrapper is found to be an interesting precursor of a porous and light-weight carbon material. During pyrolysis, material samples show significant differences in length change, displaying typical 20–25% shrinking in the in-plane directions, and strongly expanding (up to 500%) across their out-of-plane direction. This results in a template-free synthesis of a 3D network of cellular carbon material. The out-of-plane expansion also allows for fabrication of 3D shapes of cellular carbon material from the 2D precursor. The rice paper derived carbon material features a hierarchical porosity, resulting in a specific surface area ranging from 6 m(2) g(−1) to 239 m(2) g(−1) depending on the synthesis temperature. The carbon material has a density of 0.02–0.03 g cm(−3), and a higher modulus-density ratio than reported for other cellular carbon materials. It is mechanically stiff and exhibits excellent fire-resistant properties

    Integrated impedance sensing of liquid sample plug flow enables automated high throughput NMR spectroscopy

    Get PDF
    A novel approach for automated high throughput NMR spectroscopy with improved mass-sensitivity is accomplished by integrating microfluidic technologies and micro-NMR resonators. A flow system is utilized to transport a sample of interest from outside the NMR magnet through the NMR detector, circumventing the relatively vast dead volume in the supplying tube by loading a series of individual sample plugs separated by an immiscible fluid. This dual-phase flow demands a real-time robust sensing system to track the sample position and velocities and synchronize the NMR acquisition. In this contribution, we describe an NMR probe head that possesses a microfluidic system featuring: (i) a micro saddle coil for NMR spectroscopy and (ii) a pair of interdigitated capacitive sensors flanking the NMR detector for continuous position and velocity monitoring of the plugs with respect to the NMR detector. The system was successfully tested for automating flow-based measurement in a 500 MHz NMR system, enabling high resolution spectroscopy and NMR sensitivity of 2.18 nmol s1/2 with the flow sensors in operation. The flow sensors featured sensitivity to an absolute difference of 0.2 in relative permittivity, enabling distinction between most common solvents. It was demonstrated that a fully automated NMR measurement of nine individual 120 μL samples could be done within 3.6 min or effectively 15.3 s per sample
    corecore