26 research outputs found

    Primitive layered gabbros from fast-spreading lower oceanic crust

    Get PDF
    Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks-in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas-provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt

    A long in situ section of the lower ocean crust: results of {ODP} Leg 176 drilling at the Southwest Indian Ridge

    Get PDF
    Ocean Drilling Program Leg 176 deepened Hole 735B in gabbroic lower ocean crust by 1 km to 1.5 km. The section has the physical properties of seismic layer 3, and a total magnetization sufficient by itself to account for the overlying lineated sea-surface magnetic anomaly. The rocks from Hole 735B are principally olivine gabbro, with evidence for two principal and many secondary intrusive events. There are innumerable late small ferrogabbro intrusions, often associated with shear zones that cross-cut the olivine gabbros. The ferrogabbros dramatically increase upward in the section. Whereas there are many small patches of ferrogabbro representing late iron- and titanium-rich melt trapped intragranularly in olivine gabbro, most late melt was redistributed prior to complete solidification by compaction and deformation. This, rather than in situ upward differentiation of a large magma body, produced the principal igneous stratigraphy. The computed bulk composition of the hole is too evolved to mass balance mid-ocean ridge basalt back to a primary magma, and there must be a significant mass of missing primitive cumulates. These could lie either below the hole or out of the section. Possibly the gabbros were emplaced by along-axis intrusion of moderately differentiated melts into the near-transform environment. Alteration occurred in three stages. High-temperature granulite- to amphibolite-facies alteration is most important, coinciding with brittle-ductile deformation beneath the ridge. Minor greenschist-facies alteration occurred under largely static conditions, likely during block uplift at the ridge transform intersection. Late post-uplift low-temperature alteration produced locally abundant smectite, often in previously unaltered areas. The most important features of the high- and low-temperature alteration are their respective associations with ductile and cataclastic deformation, and an overall decrease downhole with hydrothermal alteration generally =<5% in the bottom kilometer. Hole 735B provides evidence for a strongly heterogeneous lower ocean crust, and for the inherent interplay of deformation, alteration and igneous processes at slow-spreading ridges. It is strikingly different from gabbros sampled from fast-spreading ridges and at most well-described ophiolite complexes. We attribute this to the remarkable diversity of tectonic environments where crustal accretion occurs in the oceans and to the low probability of a section of old slow-spread crust formed near a major large-offset transform being emplaced on-land compared to sections of young crust from small ocean basins

    Geochemical composition and crystallization temperatures of ODP Hole 176-735B gabbroic rocks

    No full text
    The transition from magmatic crystallization to high-temperature metamorphism in deep magma chambers (or lenses) beneath spreading ridges has not been fully described. High-temperature microscopic veins found in olivine gabbros, recovered from Ocean Drilling Program Hole 735B on the Southwest Indian Ridge during Leg 176, yield information on the magmatic-hydrothermal transition beneath spreading ridges. The microscopic veins are composed of high-temperature minerals, (i.e., clinopyroxene, orthopyroxene, brown amphibole, and plagioclase). An important feature of these veins is the 'along-vein variation' in mineralogy, which is correlated with the magmatic minerals that they penetrate. Within grains of magmatic plagioclase, the veins are composed of less calcic plagioclase. In grains of olivine, the veins are composed of orthopyroxene + brown amphibole + plagioclase. In clinopyroxene grains, the veins consist of plagioclase + brown amphibole and are accompanied by an intergrowth of brown amphibole + orthopyroxene. The mode of occurrence of the veins cannot be explained if these veins were crystallized from silicate melts. Consequently, these veins and nearby intergrowths were most likely formed by the reaction of magmatic minerals with fluid phases under the conditions of low fluid/rock ratios. Very similar intergrowths of brown amphibole + orthopyroxene are observed in clinopyroxene grains with 'interfingering' textures. It is believed, in general, that the penetration of seawater does not predate the ductile deformation within Layer 3 gabbros of the slow-spreading ridges. If this is the case, the fluid responsible for the veins did not originate from seawater because the formation of the veins and the interfingering textures preceded ductile deformation and, perhaps, complete solidification of the gabbroic crystal mush. It has been proposed, based on fluid inclusion data, that the exsolution of fluid from the latest-stage magma took place at temperatures >700°C in the slow-spreading Mid-Atlantic Ridge at the Kane Fracture Zone (MARK) area. No obvious mineralogical evidence, however, has been found for these magmatic fluids. The calculated temperatures for the veins and nearby intergrowths found in Hole 735B gabbros are up to 1000°C, and these veins are the most plausible candidate for the mineralogical expression of the migrating magmatic fluids
    corecore