65 research outputs found

    Sensitivity of Spectral Indices on Burned Area Detection using Landsat Time Series in Savannas of Southern Burkina Faso

    Get PDF
    Accurate and efficient burned area mapping and monitoring are fundamental for environmental applications. Studies using Landsat time series for burned area mapping are increasing and popular. However, the performance of burned area mapping with different spectral indices and Landsat time series has not been evaluated and compared. This study compares eleven spectral indices for burned area detection in the savanna area of southern Burkina Faso using Landsat data ranging from October 2000 to April 2016. The same reference data are adopted to assess the performance of different spectral indices. The results indicate that Burned Area Index (BAI) is the most accurate index in burned area detection using our method based on harmonic model fitting and breakpoint identification. Among those tested, fire-related indices are more accurate than vegetation indices, and Char Soil Index (CSI) performed worst. Furthermore, we evaluate whether combining several different spectral indices can improve the accuracy of burned area detection. According to the results, only minor improvements in accuracy can be attained in the studied environment, and the performance depended on the number of selected spectral indices

    Does topographic normalization of landsat images improve fractional tree cover mapping in tropical mountains?

    Get PDF
    Volume: Volume XL-7/W3Fractional tree cover (Fcover) is an important biophysical variable for measuring forest degradation and characterizing land cover. Recently, atmospherically corrected Landsat data have become available, providing opportunities for high-resolution mapping of forest attributes at global-scale. However, topographic correction is a pre-processing step that remains to be addressed. While several methods have been introduced for topographic correction, it is uncertain whether Fcover models based on vegetation indices are sensitive to topographic effects. Our objective was to assess the effect of topographic correction on the accuracy of Fcover modelling. The study area was located in the Eastern Arc Mountains of Kenya. We used C-correction as a digital elevation model (DEM) based correction method. We examined if predictive models based on normalized difference vegetation index (NDVI), reduced simple ratio (RSR) and tasseled cap indices (Brightness, Greenness and Wetness) are improved if using topographically corrected data. Furthermore, we evaluated how the results depend on the DEM by correcting images using available global DEM (ASTER GDEM, SRTM) and a regional DEM. Reference Fcover was obtained from wall-to-wall airborne LiDAR data. Landsat images corresponding to minimum and maximum sun elevation were analyzed. We observed that topographic correction could only improve models based on Brightness and had very small effect on the other models. Cosine of the solar incidence angle (cos i) derived from SRTM DEM showed stronger relationship with spectral bands than other DEMs. In conclusion, our results suggest that, in tropical mountains, predictive models based on common vegetation indices are not sensitive to topographic effects.Peer reviewe

    Software description: Regional frequency analysis of climate variables

    Get PDF
    This document provides the technical description of a software to be developed in the context of the EUROCLIMA project. EUROCLIMA is a cooperation program between the European Union and Latin America with a special focus in knowledge sharing on topics related to socio-environmental problems associated with climate change. The objective of the project is to improve knowledge of Latin American decision-makers and the scientific community on problems and consequences of climate change, particularly in view of integrating these issues into sustainable development strategies. The software described in this document will have as a general objective to process time series of data from ground stations (initially precipitation and temperature) in order to generate products in the form of spatially-explicit maps. The software will also be able to process any other time series of environmental spatial data. The main aspect characterizing this software is the use of statistics called L-moments to estimate the probability distribution function of climate variables. The L-moments are similar to other statistical moments, but with the advantage of being less susceptible to the presence of outliers and performing better with smaller sample sizes.JRC.H.5-Land Resources Managemen

    Mapping Cropland Burned Area in Northeastern China by Integrating Landsat Time Series and Multi-Harmonic Model

    Get PDF
    Accurate cropland burned area estimation is crucial for air quality modeling and cropland management. However, current global burned area products have been primarily derived from coarse spatial resolution images which cannot fulfill the spatial requirement for fire monitoring at local levels. In addition, there is an overall lack of accurate cropland straw burning identification approaches at high temporal and spatial resolution. In this study, we propose a novel algorithm to capture burned area in croplands using dense Landsat time series image stacks. Cropland burning shows a short-term seasonal variation and a long-term dynamic trend, so a multi-harmonic model is applied to characterize fire dynamics in cropland areas. By assessing a time series of the Burned Area Index (BAI), our algorithm detects all potential burned areas in croplands. A land cover mask is used on the primary burned area map to remove false detections, and the spatial information with a moving window based on a majority vote is employed to further reduce salt-and-pepper noise and improve the mapping accuracy. Compared with the accuracy of 67.3% of MODIS products and that of 68.5% of Global Annual Burned Area Map (GABAM) products, a superior overall accuracy of 92.9% was obtained by our algorithm using Landsat time series and multi-harmonic model. Our approach represents a flexible and robust way of detecting straw burning in complex agriculture landscapes. In future studies, the effectiveness of combining different spectral indices and satellite images can be further investigated.Peer reviewe

    Spatial Variability and Detection Levels for Chlorophyll-a Estimates in High Latitude Lakes Using Landsat Imagery

    Get PDF
    Monitoring lakes in high-latitude areas can provide a better understanding of freshwater systems sensitivity and accrete knowledge on climate change impacts. Phytoplankton are sensitive to various conditions: warmer temperatures, earlier ice-melt and changing nutrient sources. While satellite imagery can monitor phytoplankton biomass using chlorophyll a (Chl) as a proxy over large areas, detection of Chl in small lakes is hindered by the low spatial resolution of conventional ocean color satellites. The short time-series of the newest generation of space-borne sensors (e.g., Sentinel-2) is a bottleneck for assessing long-term trends. Although previous studies have evaluated the use of high-resolution sensors for assessing lakes’ Chl, it is still unclear how the spatial and temporal variability of Chl concentration affect the performance of satellite estimates. We discuss the suitability of Landsat (LT) 30 m resolution imagery to assess lakes’ Chl concentrations under varying trophic conditions, across extensive high-latitude areas in Finland. We use in situ data obtained from field campaigns in 19 lakes and generate remote sensing estimates of Chl, taking advantage of the long-time span of the LT-5 and LT-7 archives, from 1984 to 2017. Our results show that linear models based on LT data can explain approximately 50% of the Chl interannual variability. However, we demonstrate that the accuracy of the estimates is dependent on the lake’s trophic state, with models performing in average twice as better in lakes with higher Chl concentration (>20 µg/L) in comparison with less eutrophic lakes. Finally, we demonstrate that linear models based on LT data can achieve high accuracy (R2 = 0.9; p-value < 0.05) in determining lakes’ mean Chl concentration, allowing the mapping of the trophic state of lakes across large regions. Given the long time-series and high spatial resolution, LT-based estimates of Chl provide a tool for assessing the impacts of environmental change

    Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes

    Get PDF
    Climate change is expected to have detrimental consequences on fragile ecosystems, threatening biodiversity, as well as food security of millions of people. Trees are likely to play a central role in mitigating these impacts. The microclimatic conditions below tree canopies usually differ substantially from the ambient macroclimate as vegetation can buffer temperature changes and variability. Trees cool down their surroundings through several biophysical mechanisms, and the cooling benefits occur also with trees outside forest. The aim of this study was to examine the effect of canopy cover on microclimate in an intensively modified Afromontane landscape in Taita Taveta, Kenya. We studied temperatures recorded by 19 microclimate sensors under different canopy covers, as well as land surface temperature (LST) estimated by Landsat 8 thermal infrared sensor. We combined the temperature records with high-resolution airborne laser scanning data to untangle the combined effects of topography and canopy cover on microclimate. We developed four multivariate regression models to study the joint impacts of topography and canopy cover on LST. The results showed a negative linear relationship between canopy cover percentage and daytime mean (R-2 = 0.65) and maximum (R-2 = 0.75) temperatures. Any increase in canopy cover contributed to reducing temperatures. The average difference between 0 % and 100 % canopy cover sites was 5.2 degrees C in mean temperatures and 10.2 degrees C in maximum temperatures. Canopy cover (CC) reduced LST on average by 0.05 degrees C per percent CC. The influence of canopy cover on microclimate was shown to vary strongly with elevation and ambient temperatures. These results demonstrate that trees have a substantial effect on microclimate, but the effect is dependent on macroclimate, highlighting the importance of maintaining tree cover particularly in warmer conditions. Hence, we demonstrate that trees outside forests can increase climate change resilience in fragmented landscapes, having strong potential for regulating regional and local temperatures.Peer reviewe

    Clarifying the role of radiative mechanisms in the spatio-temporal changes of land surface temperature across the Horn of Africa

    Get PDF
    Vegetation plays an important role in the climate system. The extent to which vegetation impacts climate through its structure and function varies across space and time, and it is also affected by land cover changes. In areas with both multiple growing periods and significant land cover changes, such as the Horn of Africa, identifying vegetation influence on land surface temperature (LST) through radiative changes needs further investigation. In this study, we used a 13-year time series (2001−2013) of remotely sensed environmental data to estimate the contribution of radiative mechanism to LST change due to growing season albedo dynamics and land cover conversion. Our results revealed that in taller woody vegetation (forest and savanna), albedo increases during the growing period by up to 0.04 compared with the non-growing period, while it decreases in shorter vegetation (grassland and shrubland) by up to 0.03. The warming impact due to a decrease in albedo during the growing period in shorter vegetation is counteracted by a considerable increase in evapotranspiration, leading to net cooling. Analysis of land cover change impact on albedo showed a regional annual average instantaneous surface radiative forcing of −0.03 ± 0.02 W m−2. The land cover transitions from forest to cropland, and savanna to grassland, displayed the largest mean albedo increase across all seasons, causing an average instantaneous surface radiative forcing of −2.6 W m−2 and − 1.5 W m−2 and a decrease in mean LST of 0.12 K and 0.09 K, all in dry period (December, January, February), respectively. Despite the albedo cooling effect in these conversions, an average net warming of 1.3 K and 0.23 K was observed under the dominant influence of non-radiative mechanisms. These results show that the impact of radiative mechanism was small, highlighting the importance of non-radiative processes in understanding the climatic impacts of land cover changes, as well as in delineating effective mitigation strategies.Peer reviewe

    Evapotranspiration seasonality across the Amazon Basin

    Get PDF
    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (similar to 1497 mm year(-1)) and the lowest values in the Solimoes River basin (similar to 986 mm year(-1)). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.Peer reviewe
    • …
    corecore