
remote sensing  

Technical Note

Sensitivity of Spectral Indices on Burned Area Detection using
Landsat Time Series in Savannas of Southern Burkina Faso

Jinxiu Liu 1,*, Eduardo Eiji Maeda 2 , Du Wang 1 and Janne Heiskanen 2,3

����������
�������

Citation: Liu, J.; Maeda, E.E.; Wang,

D.; Heiskanen, J. Sensitivity of

Spectral Indices on Burned Area

Detection using Landsat Time Series

in Savannas of Southern Burkina

Faso. Remote Sens. 2021, 13, 2492.

https://doi.org/10.3390/rs13132492

Academic Editors: Adrian Ursu and

Cristian Constantin Stoleriu

Received: 19 May 2021

Accepted: 22 June 2021

Published: 25 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Engineering, China University of Geosciences, Beijing 100083, China;
1004185227@cugb.edu.cn

2 Department of Geosciences and Geography, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland;
eduardo.maeda@helsinki.fi (E.E.M.); janne.heiskanen@helsinki.fi (J.H.)

3 Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki,
00014 Helsinki, Finland

* Correspondence: jinxiuliu@cugb.edu.cn; Tel.: +86-10-8332-1744

Abstract: Accurate and efficient burned area mapping and monitoring are fundamental for envi-
ronmental applications. Studies using Landsat time series for burned area mapping are increasing
and popular. However, the performance of burned area mapping with different spectral indices
and Landsat time series has not been evaluated and compared. This study compares eleven spec-
tral indices for burned area detection in the savanna area of southern Burkina Faso using Landsat
data ranging from October 2000 to April 2016. The same reference data are adopted to assess the
performance of different spectral indices. The results indicate that Burned Area Index (BAI) is the
most accurate index in burned area detection using our method based on harmonic model fitting and
breakpoint identification. Among those tested, fire-related indices are more accurate than vegetation
indices, and Char Soil Index (CSI) performed worst. Furthermore, we evaluate whether combining
several different spectral indices can improve the accuracy of burned area detection. According to
the results, only minor improvements in accuracy can be attained in the studied environment, and
the performance depended on the number of selected spectral indices.

Keywords: burned area; spectral indices; Landsat time series; savanna

1. Introduction

The African savanna frequently experiences extensive fires every year, as thousands of
square kilometers are burned, making an important contribution to the total global burned
area [1]. Fire is recognized as an important feature in savanna ecosystems, as it plays a
key role in vegetation succession, carbon cycle, biodiversity, and land management [2].
Therefore, timely and accurate mapping of burned areas is essential for fire management,
climate modeling, and environmental applications. The rapid development of remote
sensing technology provides convenient and effective methods for burned area mapping
from regional to global scale. Previously, coarse spatial resolution data from Advanced Very
High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer
(MODIS), or SPOT VEGETATION images have been widely used for monitoring burned
areas [3]. However, the resolution of these sensors is too coarse to identify small burn
patches and their dynamics on a regional scale. The increasing availability of medium
spatial resolution satellite images, such as Landsat, is a valuable source of information for
more accurate detection of the burned areas at local and regional scales.

A variety of methods have been developed for burned area monitoring and mapping
using remote sensing data, including threshold-based method with spectral indices [4],
supervised image classification, such as decision trees classification [5], artificial neural
networks [6], logistic regression [2], principal component analysis [7], region growing [8],
and spectral mixture analysis [9]. Many burned area mapping methods use spectral indices
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based on post-fire images or pre-fire and post-fire images to identify burned areas and sepa-
rate those from other land cover categories and states, due to their simplicity and efficiency.
Vegetation index and fire index are two kinds of spectral indices that are widely applied
for burned area detection. Normalized Difference Vegetation Index (NDVI) is a popular
vegetation index that is used to discriminate between the burned and unburned areas, due
to its strong sensitivity to vegetation changes. There are numerous modifications of NDVI
that have been developed to reduce atmospheric sensitivity and background variability
and successfully applied in burned area detection, including the Global Environmental
Monitoring Index (GEMI), the Soil-Adjusted Vegetation Index (SAVI), and the Enhanced
Vegetation Index (EVI) [10]. Some fire indices are specifically designed and developed to
be sensitive to post-fire spectral signals, such as the Normalized Burned Ratio (NBR), the
Burned Area Index (BAI), and the Char Soil Index (CSI) [11].

The method based on image comparison by differencing the post-fire and pre-fire
images with spectral indices is frequently applied for burned area detection, and achieved
satisfactory results [12]. However, this method is constrained by the limited availability of
cloud-free images, as well as challenges related to image-to-image normalization. With free
and open access to the Landsat archive, Landsat time series data have been increasingly
utilized for burned area detection and evaluation. Goodwin and Collett [13] proposed a
method with Landsat time series data, including outlier identification caused by burned
vegetation using near-infrared and mid-infrared spectral bands, region growing segmen-
tation, and classification tree to distinguish burned area from other changes. Hawbaker
et al. [14] used machine learning, thresholding, and region growing methods to identify
burned areas with Landsat time series data using spectral band NBR. Liu et al. [15] de-
veloped an approach for mapping annual burned areas using a harmonic model fitting
with BAI time series and breakpoint identification in Landsat time series. However, the
sensitivity of different spectral indices on discriminating burned and unburned areas using
Landsat time series has not been studied.

In this paper, our objective was to explore and evaluate the effect of using various
spectral indices based on Landsat time series on the performance of burned area detec-
tion. To accomplish this goal, we used all available Landsat images between 2000 and
2016 in savannas of southern Burkina Faso for mapping burned areas. Furthermore, we
tested whether fusion of burned area detections based on several spectral indices can
improve accuracy.

2. Materials and Methods
2.1. Study Area and Remote Sensing Data

Our study area is located in southern Burkina Faso, belonging the West Sudanian
savanna ecoregion (Figure 1). The mean annual precipitation was 827 mm, and the mean
annual temperature was 27.5 ◦C [16]. Tropical dry forests and woodlands are surrounded
by agroforestry parklands and agricultural fields. There was an increased conversion of
forests and woodland into cropland during the last decade [17]. Fires, due to anthropogenic
and natural reasons, occur regularly. Most of the fires take place during the dry season
between November and February, even in early October, and late March and April. Burned
vegetation typically recovers quickly without causing permanent land cover change.

We collected all available Landsat Surface Reflectance data with WRS-2 coordinates
Path 195 Row 52 from the Earth Resources Observations and Science (EROS) Center Archive
for the time period between October 2000 and April 2016, which was the same data in
Liu et al. [15] for burned area detection. The full time series used in the study consisted
of 281 images, including 40 Landsat 5 Thematic Mapper (TM) images, 185 Landsat 7
Enhanced Thematic Mapper Plus (ETM+) images, and 56 Landsat 8 Operational Land
Imager (OLI) images. Table 1 shows the number of Landsat images from October in one
year to September in the next year ranging from 2000 to 2015. In 2015–2016, images were
from October 2015 to April 2016. All images have been atmospherically corrected, and
clouds and shadows have been removed using the Fmask algorithm [18]. We selected
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surface reflectance in blue, green, red, near-infrared (NIR), and two shortwave infrared
(SWIR1, SWIR2) bands for further analysis.
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Figure 1. Study area and the distribution of random systematic sampling points based on Landsat 5
image acquired on 15 November 2014.

2.2. Burned Area Detection Algorithm Using Landsat Time Series

The algorithm for detecting burned areas with different spectral indices included
four steps. First, the BFAST Monitor (Breaks for Additive Season and Trend Monitor)
algorithm [19] was applied to detect land cover change using Landsat NDVI time series.
Next, a harmonic model was fitted using different spectral indices for each stable period
without land cover change. Then the outliers caused by fire events were detected by
comparing model predictions with the observed values using an optimal threshold for
different spectral indices. The optimal threshold was determined separately based on the
performance of burned area detection with different spectral indices. The burned area
pixels were combined from every single image into an annual Landsat burned area within
fire season. Finally, we performed accuracy assessments using reference data interpreted
from Landsat images and compared the performance of different spectral indices in burned
area detection. Fusion of different spectral indices burned area detection results was also
tested.

2.2.1. Breakpoint Detection Using Landsat Time Series

We applied the BFAST Monitor approach to detect deforestation in this study area
described in more detail in Liu et al. [15]. The Landsat time series was separated into a
historical period which is used as a baseline, and a monitoring period. We defined the
baseline period between October 2000 and October 2002 as it is stable and has a minimum
of nine observations for each pixel. The method fits a harmonic model to each pixel NDVI
time series in a baseline period using ordinary least squares (OLS). By comparing the
discrepancy between model predictions and observations in the monitoring period with
a moving sums of residuals (MOSUM) approach, the breakpoint was detected when the
deviation from zero was beyond a 95% significance boundary. The change magnitude was
calculated by taking the median of all the residuals within the monitoring period. The
disturbance pixel was determined by a breakpoint pixel with negative magnitude [19].
Each pixel-wise time series had its own stable period after detecting land cover change.
The pixels without land cover change were regarded as stable from 2000 to 2016, and the
pixels with breakpoints were separated into before and after land cover change periods,
respectively.
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Table 1. Frequency of all available Landsat images for the study area by year.

2000–2001 2001–2002 2002–2003 2003–2004 2004–2005 2005–2006 2006–2007 2007–2008 2008–2009 2009–2010 2010–2011 2011–2012 2012–2013 2013–2014 2014–2015 2015–2016

TM 0 0 0 0 0 0 18 0 7 6 9 0 0 0 0 0
ETM+ 10 7 7 15 12 14 14 12 11 10 12 9 13 12 15 12

OLI 0 0 0 0 0 0 0 0 0 0 0 0 8 21 22 5
Sum 10 7 7 15 12 14 32 12 18 16 21 9 21 33 37 17
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2.2.2. Spectral Indices for Burned Area Detection

Following previous burned area mapping studies, several spectral indices were in-
cluded and tested in our study based on their performance (Table 2). NDVI is sensitive
to vegetation greenness and is widely used in burned area mapping studies. The Soil Ad-
justed Vegetation Index (SAVI) is selected as it suppresses the influence of soil brightness
and improves the separability of burns from soil and water. The Enhanced Vegetation
Index (EVI) does not saturate as quickly in high biomass regions by minimizing the effects
of soil and atmosphere. The Global Environmental Monitoring Index (GEMI) is designed
to minimize the influence of atmospheric effects, which are considered very important
for dark surface detection. We also included the indices specifically developed for burn
detection because they are sensitive to charcoal and ash deposition, such as NBR, NBR2,
the Burned Area Index (BAI), the Burned Area Index Modified with longer SWIR band
(BAIML), the Burned Area Index Modified with short SWIR band (BAIMs), and the Char
Soil Index (CSI).

Table 2. Summary of spectral indices. RBlue, RRed, RNIR, RSSWIR, and RLSWIR corresponds to surface reflectance in blue,
red, near-infrared, short shortwave infrared, and long shortwave infrared spectral bands, respectively.

Index Formula Reference

Burned Area Index (BAI) 1
(0.06−RNIR)

2+(0.1−RRed)
2 Chuvieco et al. (2002) [20]

Burned Area Index
Modified-SSWIR (BAIMS)

1
(0.05−RNIR)

2+(0.2−RSSWIR)
2 Martín et al. (2006) [21]

Burned Area Index
Modified-LSWIR (BAIML)

1
(0.05−RNIR)

2+(0.2−RLSWIR)
2 Martín et al. (2006) [21]

Mid-infrared burn Index (MIRBI) 10RLSWIR − 9.8RSSWIR + 2 Trigg and Flasse (2001) [22]
Char Soil Index (CSI) RNIR/RLSWIR Smith et al. (2005) [23]

Normalized Difference Vegetation Index
(NDVI) (RNIR − RRed)/(RNIR + RRed) Tucker (1979) [24]

Normalized Burn Ratio (NBR) (RNIR − RLSWIR)/(RNIR + RLSWIR) Key and Benson (2003) [25]
Normalized Burn Ratio2 (NBR2) (RSSWIR − RLSWIR)/(RSSWIR + RLSWIR) Lutes et al. (2006) [26]

Global Environmental Monitoring Index
(GEMI)

n(1 − 0.25n)− (RRed − 0.125)/(1 − RRed)

with n =
2(R2

NIR−R2
Red)+1.5RNIR+0.5RRed

RNIR+RRed+0.5

Pinty and Verstraete (1992) [27]

Soil-Adjusted Vegetation Index (SAVI) (1 + L)(RNIR − RRed)/(RNIR + RRed + L) L = 0.5 Huete (1988) [28]
Enhanced Vegetation Index (EVI) 2.5(RNIR − RRed)/(RNIR + 6RRed − 7.5RBlue + 1) Huete et al. (2002) [29]

Large parts of the study area were burned during the dry season from November
to March, and seasonal fires affected the spectral reflectance and indices, influencing
the harmonic model fit and parameters. Therefore, the burned area detection method
utilized the time series harmonic model with different spectral indices. We fitted a first
order harmonic model considering the phenology in this study area which was driven by
unimodal precipitation pattern. The following model was fit for each pixel:

yt = a + b × sin
(

2πt
T

+ c
)
+ et (1)

where yt is the dependent variable (spectral index), t is the independent variable (time as
Julian date), T is the temporal frequency (365 days), a, b and c are the model parameters
representing intercept, amplitude, and phase coefficients in the harmonic model, respec-
tively, and et is the residual error. Parameters a, b and c are derived using ordinary least
squares (OLS) linear regression for each pixel [19,30,31]. In addition to model coefficients,
the root mean square error (RMSE) is also calculated.

The method was applied to different spectral indices time series within their stable
period. The method consisted of three steps. First, we generated different spectral indices
image stacks from the Landsat time series. Second, we fitted the time series harmonic
model using the observations from different spectral indices within the stable period as the
dependent variable. Third, a threshold was selected to detect burned pixels by comparing
the observed and predicted values. We used the threshold to detect the burned pixels,
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because the clear observations, were always within the model predicted ranges (±threshold
× RMSE) when the land cover was stable. By contrast, the burned pixels deviated from
the ranges, and the threshold in our analysis was ranging from 0.5×RMSE to 3.5×RMSE
depending on the selected spectral indices. We applied the process iteratively until all the
burned pixels were detected. The burned pixels from separate images were combined into
the annual Landsat burned area during fire season by checking the date from the MODIS
burned area product (MCD45A1) as described in Liu et al. [15].

2.2.3. Optimal Threshold Selection and Accuracy Assessment

Different spectral indices had their own optimal threshold in detecting burned areas.
To compare their performance, it is necessary to determine the optimal threshold for each
spectral index. The basic idea of the optimal threshold approach is to select a threshold
value from the training samples, assuming that the optimal threshold value leading to
the maximum accuracy in extracting the burned area within the training samples is also
optimal for the entire image. There were 70 points covering the whole study area based on
systematic random sampling (Figure 1). The distances between the points in the west–east
direction and the north–south direction were all 10 km. The starting point of the sampling
was selected randomly. Therefore, we had 1120 points in total, considering the 16 years
of observations. Reference data for burned area detection is difficult to acquire over a
long period of time. Therefore, we visually interpreted each reference point using all
the available observations in the Landsat time series for accuracy assessment, as it was
demonstrated to be a practical method in previous studies [13]. We randomly selected
30% reference samples to determine the optimal threshold for each spectral index. We
compared the overall accuracy and determined the optimal threshold when the highest
overall accuracy occurred. After the optimal threshold was determined for each spectral
index, the accuracy assessment was conducted using 70% of the reference samples for each
spectral index with the corresponding optimal threshold.

2.2.4. Fusion of the Burned Area Results Based on Different Spectral Indices

To test the potential of the fusion of burned area detection results with different
spectral indices, a majority vote rule was adopted. To be specific, the burned area detection
results with different spectral indices were ranked based on the overall accuracy, and we
selected the best 3, 5, 7, 9, and 11 burned area detection results corresponding to the spectral
indices to complete the fusion process. In the fusion process, a pixel was determined as
a burned pixel if the number of the burned pixel votes was greater than half of the votes,
with the votes representing the pixel was burned according to one spectral index.

3. Results
3.1. Breakpoint Detection

The disturbance map generated using the BFAST monitor method with Landsat time
series is shown in Figure 2. Conversion from forest and woodlands to cropland was the
main cause of the land cover change from 2003 to 2016 in this study area. We observed that
most land cover changes occurred in the south-eastern part of the study area. The example
showed in Figure 2 demonstrated that land cover change identified with breakpoint time.

3.2. Optimal Threshold for Different Spectral Indices

The overall accuracy, producer’s accuracy, and user’s accuracy of burned area detec-
tion are demonstrated for a range of thresholds with different spectral indices (Figure 3).
With an increasing threshold, the producer’s accuracy showed a decreasing trend, while in
contrast, the user’s accuracy showed an increasing trend. The overall accuracy increased as
the threshold increased, and then reached the peak value, but decreased as the threshold
increased further. The optimal threshold is corresponding to the highest overall accuracy.
Among all the tested indices, BAI achieved the best overall accuracy of 80.35% with a
threshold of 2.9, followed by BAIML and BAIMs with thresholds of 2.8 and 3.1, respectively.
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NBR2 and MIRBI obtained overall accuracies around 73% and thresholds between 1.6 and
1.8. GEMI, NBR, SAVI, EVI, and NDVI had thresholds between 1.4 and 1.7. CSI provided
an overall accuracy of 63.10% with a threshold of 0.8.
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3.3. Pixel-Wise Time Series for Burned Area Detection Using Different Spectral Indices

Figures 4 and 5 demonstrate the fit of the harmonic model before and after burned
area detection for the same stable pixel time series with different spectral indices using an
optimal threshold. Overall, the characteristics of burned pixels in the time series varied
among different spectral indices time series. For BAI, BAIMs, BAIML, and MIRBI, the
burned pixels had higher values compared to unburned pixels, by contrast, the burned
pixels had lower values when compared to unburned pixels for NBR, NBR2, NDVI, SAVI,
EVI, GEMI, and CSI. BAI time series achieved the best results by accurately detecting all the
burned pixels, suggesting its sensitivity to burned signal. BAIMs and BAIML successfully
captured most of the burned area in the time series with small omission and commission
errors. More commission and omission errors were observed when using MIRBI, because
there was only a subtle difference between burned and unburned values.

The NBR, NBR2, NDVI, SAVI, EVI, and GEMI time series behaved similarly and
revealed poor performances with more commission and omission errors, demonstrating
the burned observations in these time series data could not be correctly distinguished from
unburned observations. In CSI time series, unburned pixels showed more fluctuations,
leading to the most commission errors among all the indices.

3.4. Burned Area Detection Comparison and Accuracy Assessment

We evaluated the overall accuracy, producer’s accuracy, and user’s accuracy of burned
area detection for each spectral index with the optimal threshold (Table 3). The overall
accuracies of burned area detection varied by different spectral indices. Among the spectral
indices tested, the most accurate was the BAI, with a good balance of commission and
omission errors (overall accuracy 77.81%). The next best accuracies were achieved by
BAIMs, BAIML, and MIRBI with similar performance (72.45% to 76.40%). NBR2 and NBR
achieved overall accuracies of 70.79% and 66.71%, respectively. The overall accuracies
for greenness-related spectral indices (GEMI, EVI, SAVI, NDVI) was between 63.52% and
67.99%, while GEMI outperformed EVI, SAVI, and NDVI, being the best vegetation index
for burned area mapping among the four vegetation indices. The least successful spectral
index was CSI, with an overall accuracy of 56.89%.
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GEMI 67.99 63.46 64.74
CSI 56.89 81.87 51.33

Fusion of 3 spectral indices (BAI, BAIMs, BAIML) 77.30 73.09 75.66
Fusion of 5 spectral indices (BAI, BAIMs, BAIML, MIRBI, NBR2) 78.06 72.52 77.34
Fusion of 7 spectral indices (BAI, BAIMs, BAIML, MIRBI, NBR2,

GEMI, NBR) 78.57 73.94 77.45

Fusion of 9 spectral indices (BAI, BAIMs, BAIML, MIRBI, NBR2,
GEMI, NBR, SAVI, EVI) 78.57 72.81 78.12

Fusion of 11 spectral indices (BAI, BAIMs, BAIML, MIRBI, NBR2,
GEMI, NBR, SAVI, EVI, NDVI, CSI) 77.42 71.96 76.51

OA = overall accuracy, PA = producer’s accuracy, UA = user’s accuracy.
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The performance of fusion of different spectral indices with the majority vote method
depended on the number of spectral indices used. In the fusion process, the overall
accuracies increased as the number of spectral indices increased from 3 to 9, but decreased
as the number of spectral indices increased further to 11. The best combination of spectral
indices achieved an overall accuracy of 78.57% with a fusion of 7 or 9 spectral indices, with
a slight increase compared to the best single spectral index BAI.

4. Discussion

Spectral indices are widely utilized in burned area monitoring, and different spectral
indices are used in various environments to improve burned area detection accuracy. In
this study, we tested different spectral indices in burned area detection over a savanna
environment with Landsat time series.

We found that the most accurate spectral index tested in our study was BAI, followed
by BAIMs and BAIML. This result was in line with previous studies demonstrating that
BAI is effective in burned area detection, including the savanna environment [32]. Several
studies confirm the potential of BAI in discriminating burned areas from other land cover
types, due to its higher sensitivity to char signal in post-fire images in comparison to
other spectral indices. MIRBI achieved a moderate accuracy among all the spectral indices,
and it was found to discriminate burned area from soil and arable land, but not from
shadows [33]. Our results also indicated that NBR and NBR2 are unsuitable for accurate
burned area estimations, even though NBR is a common spectral index and widely applied
in burned severity assessment [1]. The main reason is that NBR is more suitable for burned
area detection for a short time after the fire, and hence, its use is limited by the temporal
resolution of Landsat data [34]. Further assessments are necessary to evaluate the influence
of the Landsat temporal resolution on the capability to detect and measure vegetation
recovery, as well as how higher temporal resolution sensors would improve the detection
of vegetation recovery dynamics after fire events. In addition, NBR has been proved to be
less sensitive to burned areas in savanna environments, because of the general decrease in
reflectance in all spectral bands in response to fire [13].

The vegetation indices, NDVI, SAVI, EVI, and GEMI, performed similarly, with limited
capacity to identify a fire-affected area with other studies confirming these findings [11].
The main reason is that they were designed to determine vegetation properties, not in-
tended for burned area detection. The low accuracies are mainly caused by confusions
between the burned area with dark surfaces, such as soil, shadow, and water, and especially
in the dry season, the characteristic of the vegetation can lead to errors and confusion with
burned areas [20]. CSI was the least successful in burned area estimation among all the
spectral indices, and our findings on the poor performance of CSI in burned area detection
are similar to those by Schepers et al. [35], who pointed that CSI easily confused char signal
with soil.

The performance of burned area detection using a fusion of different spectral indices
depended on the number of selected spectral indices, suggesting careful selection is neces-
sary when fusing burned areas detection based on several spectral indices. However, the
small improvement in the overall accuracy in comparison to the best index (BAI) suggests
that there are only minor complementary benefits among the best indices in the studied
environment, although greater benefits might be attained elsewhere. Considering that
selecting the best indices for fusion can vary from one region to another, burned area
detection based on BAI remains a logical first choice for burned area monitoring. However,
the method based on fuzzy set theory could be a more effective way to combine indices as
indicated by a previous study [36]; hence, it deserves to be tested in future studies.

5. Conclusions

In this study, we explored the performance and sensitivity of eleven different spectral
indices on burned area detection with Landsat time series in the savanna area of southern
Burkina Faso. The burned area detection method was based on breakpoint identification
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and harmonic model fitting with Landsat data from 2000 to 2016. The result demonstrated
that BAI was the most accurate index for burned area mapping among all the tested spectral
indices. Fire-related spectral indices outperformed vegetation indices, and CSI performed
worst in burned area detection. Fusing different spectral indices only achieved minor
improvement in accuracy in our study area, and the number of selected spectral indices
influenced the burned area mapping performance.
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