13 research outputs found

    An Improved Canine Genome and a Comprehensive Catalogue of Coding Genes and Non-Coding Transcripts

    Get PDF
    The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog ∌175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional ∌3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to ∌20,700 high-confidence protein coding loci, we found ∌4,600 antisense transcripts overlapping exons of protein coding genes, ∌7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs) and ∌11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control

    No full text
    We have sequenced the genomes of 18 isolates of the closely related human pathogenic fungi Coccidioides immitis and Coccidioides posadasii to more clearly elucidate population genomic structure, bringing the total number of sequenced genomes for each species to 10. Our data confirm earlier microsatellite-based findings that these species are genetically differentiated, but our population genomics approach reveals that hybridization and genetic introgression have recently occurred between the two species. The directionality of introgression is primarily from C. posadasii to C. immitis, and we find more than 800 genes exhibiting strong evidence of introgression in one or more sequenced isolates. We performed PCR-based sequencing of one region exhibiting introgression in 40 C. immitis isolates to confirm and better define the extent of gene flow between the species. We find more coding sequence than expected by chance in the introgressed regions, suggesting that natural selection may play a role in the observed genetic exchange. We find notable heterogeneity in repetitive sequence composition among the sequenced genomes and present the first detailed genome-wide profile of a repeat-induced point mutation (RIP) process distinctly different from what has been observed in Neurospora. We identify promiscuous HLA-I and HLA-II epitopes in both proteomes and discuss the possible implications of introgression and population genomic data for public health and vaccine candidate prioritization. This study highlights the importance of population genomic data for detecting subtle but potentially important phenomena such as introgression

    Distance trees of expression profiles.

    No full text
    <p>We constructed neighbor-joining trees based on the correlation between expression values (FPKM>1.0) between samples, with 1 minus Spearman's rho defining the distance. Colors denote library construction methods (poly-A: blue, DSN: red). We divided transcribed loci into (a) protein coding genes with RNA-Seq support, either annotated by EnsEMBL in dog or EnsEMBL in the human orthologous regions. Replicates cluster together, so do the library constructions methods poly-A and DSN, as well as related tissues, such as heart and muscle; (b) antisense transcripts, that overlap at least one exon of a protein coding gene, as defined in (a). With the exception of testis, poly-A and DSN separate the samples, with both the poly-A and DSN sub-trees maintaining closer relationships between the related tissues heart and muscle; (c) spliced intergenic loci, excluding sequences that have coding potential. Similar to protein coding genes, the poly-A and DSN group by tissue first, with the exception of kidney DSN; and (d) intergenic and uncharacterized single-exon transcript loci. In this set, DSN and poly-A are, similar to antisense loci, the most dominant factor when grouping samples.</p

    The Genome of M. acetivorans Reveals Extensive Metabolic and Physiological Diversity

    No full text
    Methanogenesis, the biological production of methane, plays a pivotal role in the global carbon cycle and contributes significantly to global warming. The majority of methane in nature is derived from acetate. Here we report the complete genome sequence of an acetate-utilizing methanogen, Methanosarcina acetivorans C2A. Methanosarcineae are the most metabolically diverse methanogens, thrive in a broad range of environments, and are unique among the Archaea in forming complex multicellular structures. This diversity is reflected in the genome of M. acetivorans. At 5,751,492 base pairs it is by far the largest known archaeal genome. The 4524 open reading frames code for a strikingly wide and unanticipated variety of metabolic and cellular capabilities. The presence of novel methyltransferases indicates the likelihood of undiscovered natural energy sources for methanogenesis, whereas the presence of single-subunit carbon monoxide dehydrogenases raises the possibility of nonmethanogenic growth. Although motility has not been observed in any Methanosarcineae, a flagellin gene cluster and two complete chemotaxis gene clusters were identified. The availability of genetic methods, coupled with its physiological and metabolic diversity, makes M. acetivorans a powerful model organism for the study of archaeal biology. [Sequence, data, annotations, and analyses are available at http://www-genome.wi.mit.edu/. The sequence data described in this paper have been submitted to the GenBank data library under accession no. AE010299.
    corecore