229 research outputs found

    Prospects of high temperature ferromagnetism in (Ga,Mn)As semiconductors

    Get PDF
    We report on a comprehensive combined experimental and theoretical study of Curie temperature trends in (Ga,Mn)As ferromagnetic semiconductors. Broad agreement between theoretical expectations and measured data allows us to conclude that T_c in high-quality metallic samples increases linearly with the number of uncompensated local moments on Mn_Ga acceptors, with no sign of saturation. Room temperature ferromagnetism is expected for a 10% concentration of these local moments. Our magnetotransport and magnetization data are consistnent with the picture in which Mn impurities incorporated during growth at interstitial Mn_I positions act as double-donors and compensate neighboring Mn_Ga local moments because of strong near-neighbor Mn_Ga-Mn_I antiferromagnetic coupling. These defects can be efficiently removed by post-growth annealing. Our analysis suggests that there is no fundamental obstacle to substitutional Mn_Ga doping in high-quality materials beyond our current maximum level of 6.2%, although this achievement will require further advances in growth condition control. Modest charge compensation does not limit the maximum Curie temperature possible in ferromagnetic semiconductors based on (Ga,Mn)As.Comment: 13 pages, 12 figures, submitted to Phys. Rev.

    Mn incorporation in as-grown and annealed (Ga,Mn)As layers studied by x-ray diffraction and standing-wave uorescence

    Full text link
    A combination of high-resolution x-ray diffraction and a new technique of x-ray standing wave uorescence at grazing incidence is employed to study the structure of (Ga,Mn)As diluted magnetic semiconductor and its changes during post-growth annealing steps. We find that the film is formed by a uniform, single crystallographic phase epilayer covered by a thin surface layer with enhanced Mn concentration due to Mn atoms at random non-crystallographic positions. In the epilayer, Mn incorporated at interstitial position has a dominant effect on lattice expansion as compared to substitutional Mn. The expansion coeffcient of interstitial Mn estimated from our data is consistent with theory predictions. The concentration of interstitial Mn and the corresponding lattice expansion of the epilayer are reduced by annealing, accompanied by an increase of the density of randomly distributed Mn atoms in the disordered surface layer. Substitutional Mn atoms remain stable during the low-temperature annealing.Comment: 9 pages, 9 figure

    Unlocking the Fertilizer Potential of Waste-Derived Biochar

    Get PDF
    Mankind is facing a phosphorus (P) crisis. P recycling from anthropogenic waste is critical to close the P loop. Pyrolysis could be the ideal treatment for materials, such as sewage sludge (SS), producing a safe, nutrient-rich biochar product while sequestering the inherent carbon (C). However, pyrolyzed sewage sludge typically contains low levels of potassium (K) and plant available P, making the material rather unsuitable for use as fertilizer. Here, a novel treatment was investigated to produce an optimized P and K biochar fertilizer. We doped sewage sludge with a low-cost mineral (2 and 5% potassium acetate) and pyrolyzed it at 700 °C. The percentage water extractable of the total P content in biochar increased by 237 times with 5% K addition compared to the undoped biochar. After six water extractions, all of the K and 16% of P were obtained. Further optimization is feasible through adjustments of the biochar pH or doping the feedstock with other forms of K. Using X-ray absorption near-edge spectroscopy (XANES) and synchrotron X-ray fluorescence (XRF) mapping, we identified highly soluble potassium hydrogen phosphate up to 200−300 μm below the biochar surface. This simple and cost-effective modification enables the use of sewage sludge as safe biochar fertilizer with tailored P availability that also supplies K, improves soil properties, and sequesters C

    S-Benzylthiuronium Salts of Some Barhituric Acid Derivatives*

    Get PDF
    Preparation and properties of the S-benzylthiuronium salts of fourteen barbituric acid derivatives are described

    S-Benzylthiuronium Salts of Some Barhituric Acid Derivatives*

    Get PDF
    Preparation and properties of the S-benzylthiuronium salts of fourteen barbituric acid derivatives are described

    Systematic study of Mn-doping trends in optical properties of (Ga,Mn)As

    Get PDF
    We report on a systematic study of optical properties of (Ga,Mn)As epilayers spanning the wide range of accessible substitutional Mn_Ga dopings. The growth and post-growth annealing procedures were optimized for each nominal Mn doping in order to obtain films which are as close as possible to uniform uncompensated (Ga,Mn)As mixed crystals. We observe a broad maximum in the mid-infrared absorption spectra whose position exhibits a prevailing blue-shift for increasing Mn-doping. In the visible range, a peak in the magnetic circular dichroism blue shifts with increasing Mn-doping. These observed trends confirm that disorder-broadened valence band states provide a better one-particle representation for the electronic structure of high-doped (Ga,Mn)As with metallic conduction than an energy spectrum assuming the Fermi level pinned in a narrow impurity band.Comment: 22 pages, 14 figure

    Winter wheat, winter rape and poppy crop growth evaluation with the help of remote and proximal sensing measurements

    Get PDF
    Monitoring of agricultural crops with the help of remote and proximal sensors during the growing season plays important role for site-specific management decisions. Winter wheat, winter rape and poppy are representatives of typical agricultural crops from the family Poacea, Brassicaceae and Papaveraceae, growing in relative dry area of Rakovník district in the Czech Republic. Ten Sentinel 2 satellite images acquired during vegetation season of the crops were downloaded and processed. Crops were monitored with the help of unmanned aerial vehicles (UAV) equipped with consumer grade Red Green Blue (RGB) camera and multispectral (MS) MicaSense RedEdge MX camera. In-field variability was assessed by computing RGB-based vegetation indices Triangular Greenness Index (TGI), Green Leaf Index (GLI) and Visible Atmospherically Resistant Index (VARI) and commonly used vegetation indices as Normalised Difference Vegetation Index (NDVI) and Green NDVI (GNDVI). The results derived from satellite and UAV images were supported with in-situ measurements of hand-held GreenSeeker and Chlorophyll Meter Content sensors. The study showed the usability of individual vegetation indices, especially the TGI index for chlorophyll content estimation, and VARI index for green vegetation fraction detection and leaf area index estimation, in comparison with selected handheld devices. The results showed as well that leaf properties and canopy structure of typical characteristics of selected families can significantly influence the spectral response of the crops detected in different phenological stages

    Theory of ferromagnetic (III,Mn)V semiconductors

    Get PDF
    The body of research on (III,Mn)V diluted magnetic semiconductors initiated during the 1990's has concentrated on three major fronts: i) the microscopic origins and fundamental physics of the ferromagnetism that occurs in these systems, ii) the materials science of growth and defects and iii) the development of spintronic devices with new functionalities. This article reviews the current status of the field, concentrating on the first two, more mature research directions. From the fundamental point of view, (Ga,Mn)As and several other (III,Mn)V DMSs are now regarded as textbook examples of a rare class of robust ferromagnets with dilute magnetic moments coupled by delocalized charge carriers. Both local moments and itinerant holes are provided by Mn, which makes the systems particularly favorable for realizing this unusual ordered state. Advances in growth and post-growth treatment techniques have played a central role in the field, often pushing the limits of dilute Mn moment densities and the uniformity and purity of materials far beyond those allowed by equilibrium thermodynamics. In (III,Mn)V compounds, material quality and magnetic properties are intimately connected. In the review we focus on the theoretical understanding of the origins of ferromagnetism and basic structural, magnetic, magneto-transport, and magneto-optical characteristics of simple (III,Mn)V epilayers, with the main emphasis on (Ga,Mn)As. The conclusions we arrive at are based on an extensive literature covering results of complementary ab initio and effective Hamiltonian computational techniques, and on comparisons between theory and experiment.Comment: 58 pages, 49 figures Version accepted for publication in Rev. Mod. Phys. Related webpage: http://unix12.fzu.cz/ms
    corecore