
2049

Agronomy Research 18(3), 2049 2059, 2020
https://doi.org/10.15159/AR.20.176

Winter wheat, winter rape and poppy crop growth evaluation
with the help of remote and proximal sensing measurements

Z. 1,*, K. 1, J. 1, J. 2 and J. 3

1Czech University of Life Sciences Prague, Faculty of Engineering, Department of

2

3Czech University of Life Sciences, Faculty of Engineering, Department of Agricultural
00 Prague, Czech Republic

*Correspondence: jelinekzdenek@tf.czu.cz

Abstract. Monitoring of agricultural crops with the help of remote and proximal sensors during
the growing season plays important role for site-specific management decisions. Winter wheat,
winter rape and poppy are representatives of typical agricultural crops from the family Poacea,
Brassicaceae and Papaveraceae, growing in relative dry area of
Republic. Ten Sentinel 2 satellite images acquired during vegetation season of the crops were
downloaded and processed. Crops were monitored with the help of unmanned aerial vehicles
(UAV) equipped with consumer grade Red Green Blue (RGB) camera and multispectral (MS)
MicaSense RedEdge MX camera. In-field variability was assessed by computing RGB-based
vegetation indices Triangular Greenness Index (TGI), Green Leaf Index (GLI) and Visible
Atmospherically Resistant Index (VARI) and commonly used vegetation indices as Normalised
Difference Vegetation Index (NDVI) and Green NDVI (GNDVI). The results derived from
satellite and UAV images were supported with in-situ measurements of hand-held GreenSeeker
and Chlorophyll Meter Content sensors. The study showed the usability of individual vegetation
indices, especially the TGI index for chlorophyll content estimation, and VARI index for green
vegetation fraction detection and leaf area index estimation, in comparison with selected hand-
held devices. The results showed as well that leaf properties and canopy structure of typical
characteristics of selected families can significantly influence the spectral response of the crops
detected in different phenological stages.

Key words: satellite images, unmanned aerial vehicles, vegetation indices, winter wheat, winter
rape, poppy.

INTRODUCTION

Monitoring the vitality of agricultural crops during the whole growing season is
significant for increasing crop yields and reducing input resources and costs for the
agricultural system (Brisco et al., 1998). Knowledges of vegetation indices are
fundamental for understanding of agricultural ecosystems as well (Wang et al., 2010).
Vegetation indices can describe health and condition of agricultural crops, but each of
indices uses different part of electromagnetic spectrum and therefore each of indices has
different informative value.
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Triangular Greenness Index (TGI) index calculates the triangle area of the
reflectance spectrum in red, green and blue wavelengths, allows estimation of
chlorophyll concentration in leaves and the canopy (Hunt et al., 2013). Green Leaf Index
(GLI) is one of the important indices commonly used for yield forecasting. This spectral
index was originally designed for use with RGB camera in data range from 0 to 255
(Gobron et al., 2000; Hunt et al., 2013). Visible Atmospherically Resistant Index (VARI)
estimates the fraction of crops in scene with low sensitivity to atmospheric effects
(Gitelson et al., 2002). Normalised Difference Vegetation Index (NDVI) is measure of
healthy, green vegetation. The combination of it is normalized difference formulation
and use of the highest absorption and reflectance regions of chlorophyll make it robust
over a wide range of conditions (Rouse et al., 1974). Green NDVI (GNDVI) has similar
algorithm to NDVI, but green part of electromagnetic spectrum (in 540 to 570 nm) is
measured instead of the red part. GNDVI is more sensitive to chlorophyll content
(Gitelson et al., 2002).

Data from Copernicus program can be free downloaded and used for evaluation of
crop plots with using commercial software or open access software. Optical satellite

2017). Compared to satellite images, unmanned aerial vehicles represent a much more
accurate source of images for crop growth monitoring, especially in terms of spatial and
temporal resolution. We can say, that UAVs are the most important technologies in
agriculture and their flexibility help scientific sectors development and farmers in praxis

example high resolution multispectral camera, digital camera, thermal camera, LiDAR
etc. (Grenzdorffer et al., 2008).

The use of modern technologies in precision agriculture is the reply to new epoch
of farming systems, private companies or scientists. Good informations in precision

measurements, may affect the production function of immediate yield monitoring. That
is why the main aim of this study was to evaluate crop growth of winter wheat, winter
rape and poppy with the use of proximal and remote sensing measurements. The other
objective of this study was to compare the utilization of selected RGB indices with most
common spectral indices and prove use for common agricultural practice.

MATERIALS AND METHODS

Study area

the Czech Republic. Experimental field with winter wheat was in size of 16.48 ha with
average elevation of 355.96 m a.s.l. and 3.32% slope. Winter rape field had 19.30 ha
with 360.35 m a.s.l. average elevation and 4.14% slope. Poppy field had 18.77 ha with
average elevation of 349.25 m a.s.l. and 2.90% slope. Weather condition, total monthly
precipitation and temparatures data for the years 2018 and 2019 and then total monthly
average of 1961 1990 were provided by the hydrometeorological s

1). The experimental fields are owned by Agricultural
Company Lupofyt s.r.o. Soil tillage minimalization technology with alternately
conventional arable soil technology (ploughing) were used on experimental plots. Since
2015 the crop rotation for the field with winter wheat has been: winter wheat (2015),
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lupine (2016), winter wheat (2017), winter rape (2018) and winter wheat (2019); for the
field with winter rape: winter rape (2015), winter wheat (2016), winter rape (2017),
winter wheat (2018) and winter rape (2019); and for the field with poppy: winter rape
(2015), winter wheat (2016), winter rape (2017), winter wheat (2018) and poppy (2019).

Table 1. Weather conditions (monthly precipitations and temperatures) for the years 2018 and
2019 and total monthly average of 1961

Precipitation (mm)
Month/Year 2018 2019 Avg 1961 1990 2018 2019 Avg 1961 1990
I. 25.0 34.0 32.0 1.1 1.9 -2.0
II. 2.0 5.0 30.0 2.7 0.5 -0.4
III. 36.0 40.0 36.0 6.9 4.8 3.4
IV. 33.0 26.0 43.0 10.6 8.4 8.1
V. 121.0 41.0 70.0 12.6 13.2 13.0
VI. 27.0 60.0 75.0 16.7 16.5 16.3
VII. 94.0 28.0 72.0 20.1 20.8 17.8
VIII. 64.0 70.0 73.0 16.6 22.1 17.2
IX. 85.0 20.0 46.0 14.7 13.7 13.6
X. 51.0 54.0 36.0 10.6 8.4 8.6
XI. 18.0 64.0 40.0 6.4 6.6 3.3
XII. 31.0 17.0 35.0 2.5 4.9 -0.2
Sum 587.0 459.0 590.0 - - -
Mean 49.0 38.0 49.0 10.2 10.1 8.2

Data description
Measurements were performed during vegetation season 2019 on winter wheat,

winter rape and poppy crops. Measurements consisted of spectral indices derived from
Sentinel 2A/B MSI images, UAV images and handheld devices (GreenSeeker and
Chlorophyllmeter). The details can be found in Table 2.

Yield and remote sensing data
Combine harvester New Holland CR9080 was used for yield measurement. This

machine was equipped with yield monitor and DGPS receiver. EGNOS correction
0.3 0.6 m in vertical

direction). The yield data were saved every 1 second with coordinates to the external
memory. The yield data were processed by basic statistical method in order to eliminate
the errors of yield measurement system. The yield data sets were then interpolated to
kriging maps (see Fig. 1) using experimental variograms and common procedures. The

with poppy yield measurement, the special correction of this yield data set was used.
Geographically Weighted Regression (GWR; ArcGIS 10.4.1 SW, ESRI Redlands, CA,
USA) with the use of last satellite images from poppy vegetation season (28 June) was
used for this correction. GWR is one of several spatial regression techniques increasingly
used in geography and other disciplines. GWR provides a local model of the variable or
process by fitting a regression equation to every feature in the dataset. GWR constructs
these separate equations by incorporating the dependent and explanatory variables of
features falling within the bandwidth of each target feature (ESRI, 2019).
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Figure 1. Yield maps (in t ha-1) of poppy (a); winter wheat (b); and winter rape (c).

Table 2. Measurements (date, platform with sensors and spectral indices) used in this study for
individual crops for the vegetation season 2019

Date
Platform and
sensor

Winter wheat
Indices

Winter rape
Indices

Poppy
Indices

4 April S2A MSI GNDVI, NDVI,
TGI, VARI

GNDVI, NDVI,
TGI, VARI

GLI*, GNDVI*, NDVI*,
TGI*, VARI*

12 April UAV with RGB
camera

- TGI -

GreenSeeker NDVI NDVI -
N-Sensor NDGI NDGI -
Chlorophyllmeter CFR CFR -

19 April S2B MSI GNDVI, NDVI,
TGI

GNDVI, NDVI,
TGI

GLI*, GNDVI*, NDVI*,
TGI*, VARI*

24 April S2A MSI GNDVI, NDVI,
TGI

GNDVI, NDVI,
TGI

GLI*, GNDVI*, NDVI*,
TGI*, VARI*

1 May GreenSeeker NDVI - -
N-Sensor NDGI
Chlorophyllmeter CFR

19 May S2B MSI clouds only parts of the fields usable, not used for the study
24 May S2A MSI GNDVI, NDVI,

TGI
Clouds, shadows GNDVI, NDVI, TGI

3 June S2A MSI GNDVI, NDVI,
TGI

GNDVI, NDVI,
TGI

GNDVI, NDVI, TGI

8 June S2B MSI GNDVI, NDVI,
TGI

clouds GNDVI, NDVI, TGI

13 June S2A MSI GNDVI, NDVI,
TGI

GNDVI, NDVI,
TGI

GNDVI, NDVI, TGI

17 June UAV with
MicaSense camera

- - GLI, GNDVI, NDVI

18 June S2B MSI clouds GNDVI, NDVI, TGIclouds
28 June S2B MSI GNDVI, NDVI,

TGI
GNDVI, NDVI, TGI GNDVI, NDVI, TGI

30 June GreenSeeker - - NDVI
*= spectral indices calculated for the bare soil; CFR = Content of Chlorophyll, GLI = Green Leaf Index;
GNDVI = Green Normalised Difference Vegetation Index; NDVI = Normalised Difference Vegetation
Index; NDGI = Normalised Difference Green Index; TGI = Triangular Greenness Index; VARI = Visible
Atmospherically Resistant Index; S2A/B MSI = Sentinel 2A/B Multispectral Instrument.

a) c)b)
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The Sentinel 2A or B satellite images for vegetation season of 2019 were
downloaded from Copernicus Open Access Hub (https://scihub.copernicus.eu/). The
satellite images in level of BOA reflectance (Bottom of Atmosphere) L2A were
resampled to 10 m spatial resolution with the help of SW ENVI 5.5 (Excelis, Inv. Mc
Lean, USA) or SNAP 6.0.4 (ESA, http://step.esa.int/main/). Aerial survey were
performed using common UAV with common RGB camera on 12 April for winter wheat
and winter rape monitoring, and using Phantom UAV with MicaSense RedEdge-MX
camera (MicaSense, Inc. Seattle, WA, USA) with five spectral bands (RED, GREEN,
BLUE, Red Edge and NIR channels) and 1.2 Mpx per EO band sensor resolution on
17 June for poppy monitoring.

Spectral indices (see Table 3) were calculated from each of Sentinel 2 image
(see Table 2). The images were acquired for the whole vegetation season with the aim
to reach essential growth stages (see Fig. 2 and Table 4).

Table 3. Vegetation indices used in this study

RGB Spectral Index Algorithm References
Normalized Difference Vegetation Index (Rouse et al., 1974)

Green Normalized Difference Vegetation
Index

(Gitelson et al., 1996)

Green Leaf Index (Gobron et al., 2000;
Hunt et al., 2013)

Visible Atmospherically Resistant Index (Gitelson et al., 2002)

Triangular Greenness Index G- - (Hunt et al., 2013)

Where g = G/(R+G+B); b = B/(R+G+B); r = R/(R+G+B); and green (G), red (R), blue (B) and NIR are the
reflectance values of each band.

Figure 2. Graphs of Normalised Difference Vegetation Index (NDVI), Green NDVI (GNDVI)
(a); and Triangular Greenness Index (TGI) (b) for winter wheat, winter rape and poppy calculated
from Sentinel 2 images for vegetation season.

b)a)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.

500

400

300

200

100

0

-100

-200
4 April           24 April          3 June          13 June         28 June

19 April          24 Mai           8 June          18 June
Date

4 April           24 April          3 June          13 June         28 June
19 April          24 Mai           8 June          18 June

Date



2054

Table 4. Growth stages of monitored crops, expressed in BBCH scale

BBCH Winter wheat Winter rape Poppy
0 19 21.9.2018 10.11.2018 6.8.2018 31.3.2019 25.3.2019 20.4.2019
20 29 11.11.2018 10.4.2019 - 21.4.2019 10.5.2019
30 59 11.4. 31.5.2019 1.4. 15.4.2019 11.5.2019 15.6.2019
60 89 1.6.2019 27.7.2019 16.4. 24.7.2019 16.6.2019 28.7.2019

Data were compared for each of the selected crop (winter wheat, winter rape and
poppy). Correlation coefficients (R) were calculated between generally known and used
NDVI and GNDVI spectral indices and TGI index for Sentinel 2 images, and then these
indices derived from Sentinel 2 images were compared with other measurements
(Chlorophyllmeter, GreenSeeker, N-Sensor, indices derived from UAV images and
yield data).

RESULTS AND DISCUSSION

The coefficients of correlation for selected parameters are shown in Table 5, 6
and 7. The coefficients of correlation were calculated for a 5% significance level.

Table 5. Coefficients of correlation between Triangular Greenness Index (TGI) and Normalized
Different Vegetation Index (NDVI) a Green NDVI (GNDVI) derived from Sentinel 2 images for
the vegetation season of winter wheat, winter rape and poppy (at 5% significance level)

Winter wheat Winter rape Poppy
Date Index NDVI GNDVI NDVI GNDVI NDVI GNDVI
4 April TGI -0.14 -0.28 0.59 0.47 -0.04 -0.64

VARI -0.31 -0.25 -0.48 -0.43 0.61 0.84
19 April TGI -0.34 -0.50 0.63 0.51 0.10 -0.43
24 April TGI -0.33 -0.49 0.55 0.37 0.11 -0.41
24 May TGI 0.80 0.80 - - 0.85 0.74
3 June TGI -0.19 -0.32 0.17 -0.10 0.82 0.52
8 June TGI -0.10 -0.39 - - 0.85 0.73
13 June TGI 0.12 -0.16 0.45 0.15 0.74 0.70
18 June TGI - - 0.42 0.53 - -
28 June TGI 0.70 0.49 0.47 -0.12 0.78 0.60

Table 5 showed comparison between RGB indices (TGI and VARI) and NDVI and
GNDVI spectral indices with near-infrared band, mostly used in literature (e.g.

Sentinel 2 images only. The results showed that TGI index developed for chlorophyll
estimation calculated using RGB spectral bands had the strongest correlations with
NDVI and GNDVI for poppy crops in comparison with the other (winter wheat and
winter rape). Higher values of correlations in 24 May and 8 June were probably caused
by light condition over the experimental field (clouds shadows on crop canopy).
Nevertheless, results from 3 June, when the images was clear, showed that correlation
between NDVI and TGI in case of poppy was relatively high as well. It means that the
shadows affect the measured values to some extent, but the trend is generally maintained.
Generally, correlations between TGI and NDVI were more significant for poppy
(calculated from end of April see BBCH scale in Table 4) and winter rape. On the
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contrary, winter wheat crops showed more significant dependence between TGI and
GNDVI during the growth season, when the plants were green. The last image captured
on 28 June showed opposite results because of partly matured canopy. As the results on
4 April in case of winter wheat and winter rape showed, VARI index developed for
vegetation faction and leaf area estimation could be used only for early growth stages
evaluation, when canopy is uneven. The development of NDVI and GNDVI indices
calculated from Sentinel 2 images are given in the Fig. 2, a. The graph showed relatively
similar development of the values of these spectral indices. Early values of crop growth
were evaluated only in case of winter wheat and winter rape canopy (see Table 4). On
the contrary, TGI index in Fig. 2, b showed uneven development of this index and plant
growth during the time which is probably caused by light condition over the
experimental field (clouds shadows on crop canopy) how it is explained higher.

Table 6. Coefficients of correlation between handheld sensors (CFR = Chlorophyllmeter;
N-Sensor a GreenSeeker = GSK) and UAV images (Triangular Greenness Index = TGI) used in
this study and spectral indices (NDVI, GNDVI, TGI and VARI) derived from Sentinel 2 (S2)
images for winter wheat and winter rape and crop yield (at 5% significance level)

Winter wheat Winter rape

Sensor
NDVI
S2

GNDVI
S2

TGI
S2

VARI
S2

NDVI
S2

GNDVI
S2

TGI
S2

VARI
S2

4 April S2 images 4 April S2 images
CFR -0.21 -0.25 0.07 -0.01 -0.20 -0.21 -0.07 0.15
NDGI N-
Sensor

-0.19 -0.21 0.02 0.03 - - - -

NDVI GSK 0.47 0.50 -0.41 -0.08 0.52 0.53 0.18 -0.34
TGI UAV - - - - 0.36 0.33 0.22 -0.18

19 April S2 images 19 April S2 images
CFR -0.02 -0.03 0.00 - -0.15 -0.16 -0.08 -
NDGI N-
Sensor

0.05 0.06 -0.07 - - - - -

NDVI GSK 0.29 0.31 -0.36 - 0.47 0.46 0.23 -
TGI UAV - - - - 0.34 0.29 0.19 -

24 April S2 images
CFR -0.09 -0.07 0.08 - - - - -
NDGI N-
Sensor

-0.02 0.00 -0.18 - - - - -

NDVI GSK 0.19 0.17 0.00 - - - - -
28 June S2 images 28 June S2 images

Yield 0.37 0.31 0.27 - 0.10 -0.15 0.41 -

Table 6 described the coefficients of correlation between selected handheld sensors
and UAV images, and spectral indices (NDVI, GNDVI, TGI) calculated from Sentinel 2
images. The dependences between selected variables were relatively low. Nevertheless,
more significant correlations (R = 0.47/0.50 NDVI /GNDVI for winter wheat;
0.52/0.53 NDVI/GNDVI for winter rape on 12 April vs. 4 April) were found between
NDVI measured with GreenSeeker and indices derived from Sentinel 2. Similarly higher
correlations between NDVI measured by GreenSeeker on 30 June and Sentinel 2 spectral
indices (28 June) derived for poppy are given in Table 7. Significantly higher
correlations (around the R values of 0.6 for NDVI and GNDVI; and around 0.46 R value
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for TGI) between spectral indices calculated from UAV images (from 17 June) and
Sentinel 2 images (13 June) are given in Table 7 as well. Comparison between last
satellite images (see Fig. 3) and crop yield are given in Table 6 for winter wheat and
winter rape, and Table 7 for poppy.

Figure 3. Normalised Difference Vegetation Index (NDVI) a); Green NDVI (GNDVI) (b);
Triangular Greenness Index (TGI) (c) for winter wheat (w), winter rape (r) and poppy (p).

Table 7. Coefficients of correlation between handheld sensors and UAV images used in this
study and spectral indices derived from Sentinel 2 (S2) images for poppy and crop yield (at 5%
significance level)

Date Sensor
Poppy
NDVI S2 GNDVI S2 TGI S2
13 June S2 images

17 June GLI UAV 0.61 0.57 0.46
GNDVI UAV 0.64 0.61 0.46
NDVI UAV 0.63 0.59 0.47

28 June S2 images NDVI GSK 30 June
30 June NDVI GSK 0.47 0.31 0.68 -

Yield 0.62 0.54 0.58 0.48

These results showed that normalised indices calculated from UAV images could
suitably complement the time series of satellite images, if any are missing, for example
due to cloud cover. This statement is in accordance with study of Cucho-Padin et al.
(2019). They tested usability of agricultural UAV based remote sensing methods to
increasing productivity with high-quality multispectral camera and open-access
software. Their study proved high usability and higher accuracy of UAV images than
satellite images from Sentinel 2. The development of high-precision agricultural
techniques has been observed for at least two decades (e.g. Moran et al., 1997). However,
our results show that even low-cost cameras can be useful for crop scanning.

Hunt et al. (2005), Lelong et al. (2008), Sakamoto et al. (2011), Lebourgeois et al.

deployed to acquire data. Because of agricultural purposes, data from UAV had to be
processed quickly for providing recommendations. These findings are supported by our

b)a) c)
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research. Based on our measurements during season, we found UAV with multispectral
camera as a good source of data to assess the health of the crop and crop predict yield as
well. Compared to data collection from Sentinel 2, we are able to obtain data with higher
spatial resolution without the risk of cloudy. On the other hand our results are similar as
conclusion by Hunt & Stern (2019) that RGB spectral indices (TGI and VARI) derived
from UAV camera are crucial dependent on lighting conditions. Barbosa et al. (2019)
confirmed the dependence of scanned vegetation on light conditions as well.

Handheld devices like GreenSeeker, Chlorophyllmeter or N-sensor can be useful
especially for quickly determining the current state of the crops at selected locations.
Because of in-situ measurements, it is hard to select the representative leaf for

out the usability of this handheld crop sensor for estimation of winter barley crop
condition and yield. They presented that GreenSeeker handheld crop sensor is not
suitable for large area of crops estimation due to point measurement. Our results are in
accordance with theirs.

On the other hand our results confirm the usability of UAV with multispectral
camera to evaluate and predict the yield. The results also show a more suitable use of
the TGI index to cereals and poppy than
that NDVI are more accuracy to cereals than winter rape as well. It can be caused by
different canopy and leaves structure of agricultural crops of different family (in our case

Sentinel 2 image to estimate crop structure from 96% for winter wheat. Hunt et al. (2013)
researched topic of a visible spectrum band indices. They described TGI as a significant
spectral index for crop evaluation. This theory has also been confirmed by our research,
primarily for winter wheat and poppy than winter rape. Broge & Leblanc (2000)
compared TGI index and canopy reflectance and their results indicated strong
correlation, mainly for NDVI, SAVI indices. Although Masoni et al. (1996) found, that
high TGI index may be a symptom of other problems. These conclusions are mostly in
accordance with ours. Among other crops, our study focused on poppy monitoring as a
crop that is relatively commonly cultivated in the Czech Republic, especially for the food
or technical purposes, but at the same time it is not allowed worldwide for legislative
reasons. Our study can be useful for agricultural practice. Nevertheless next year of
poppy monitoring could be useful for making our results more significant.

ACKNOWLEDGEMENTS. The authors wish to deep thank the farmers in Agricultural
Company Lupofyt for their time, inputs data and provided experimental fields.

CONCLUSIONS

Our research showed solution with the use of visible spectral indices (GLI, TGI and
VARI) derived not only from Sentinel 2 images, but from UAVs with common used
multispectral or low-cost RGB camera as well. Nevertheless the highest coefficient of
correlation between TGI index and NDVI derived from Sentinel 2 images is for poppy
in average 0.69, with the maximum of 0.85. This points to the use of the TGI index in
case of poppy as an alternative to NDVI when only common RGB camera is available.
Generally, the results showed potential in UAV data collection as provide high spatial
resolution, lower weather independence and select the best term of imaging. The devices
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used in this study need to be more used and proved in selected terms during the crop
growth in the future.
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