72 research outputs found

    The criticality of centers of potential systems at the outer boundary

    Get PDF
    The number of critical periodic orbits that bifurcate from the outer boundary of a potential center is studied. We call this number the criticality at the outer boundary. Our main results provide sufficient conditions in order to ensure that this number is exactly 0 and 1. We apply them to study the bifurcation diagram of the period function of X = −y∂ x ((x 1) p − (x 1) q )∂ y with q < p. This family was previously studied for q = 1 by Y. Miyamoto and K. Yagasaki

    Study of the period function of a two-parameter family of centers

    Get PDF
    In this paper we study the period function of ẍ = (1 x) p − (1 x) q , with p, q ∈ R and p > q. We prove three independent results. The first one establishes some regions in the parameter space where the corresponding center has a monotonous period function. This result extends the previous ones by Miyamoto and Yagasaki for the case q = 1. The second one deals with the bifurcation of critical periodic orbits from the center. The third one is addressed to the critical periodic orbits that bifurcate from the period annulus of each one of the three isochronous centers in the family when perturbed by means of a one-parameter deformation. These three results, together with the ones that we obtained previously on the issue, leads us to propose a conjectural bifurcation diagram for the global behaviour of the period function of the family

    On the minimum positive entropy for cycles on trees

    Get PDF
    Consider, for any n ∈ N, the set Posn of all n-periodic tree patterns with positive topological entropy and the set Irrn ( Posn of all n-periodic irreducible tree patterns. The aim of this paper is to determine the elements of minimum entropy in the families Posn and Irrn. Let λn be the unique real root of the polynomial xn − 2x − 1 in (1, +∞). We explicitly construct an irreducible n-periodic tree pattern Qn whose entropy is log(λn). For n = mk, where m is a prime, we prove that this entropy is minimum in the set Posn. Since the pattern Qn is irreducible, Qn also minimizes the entropy in the family Irrn

    Periods of solutions of periodic differential equations

    Get PDF
    Smooth non-autonomous T-periodic differential equations x'(t)=f(t,x(t)) defined in \R\K^n, where \K is \R or \C and n 2 can have periodic solutions with any arbitrary period~S. We show that this is not the case when n=1. We prove that in the real C^1-setting the period of a non-constant periodic solution of the scalar differential equation is a divisor of the period of the equation, that is T/S\N. Moreover, we characterize the structure of the set of the periods of all the periodic solutions of a given equation. We also prove similar results in the one-dimensional holomorphic setting. In this situation the period of any non-constant periodic solution is commensurable with the period of the equation, that is T/S\Q

    A quasiperiodically forced skew-product on the cyclinder without fixed-curves

    Get PDF
    In [FJJK] the Sharkovskiı Theorem was extended to periodic orbits of strips of quasiperiodic skew products in the cylinder. In this paper we deal with the following natural question that arises in this setting: Does Sharkovskiı Theorem holds when restricted to curves instead of general strips? We answer this question in the negative by constructing a counterexample: We construct a map having a periodic orbit of period 2 of curves (which is, in fact, the upper and lower circles of the cylinder) and without any invariant curve. In particular this shows that there exist quasiperiodic skew products in the cylinder without invariant curves. [FJJK] Roberta Fabbri, Tobias Jäger, Russell Johnson, and Gerhard Keller. A Sharkovskii-type theorem for minimally forced interval maps. Topol. Methods Nonlinear Anal., 26(1):163--188, 2005

    On the minimum positive entropy for cycles on trees

    Get PDF
    Consider, for any n ∈ N, the set Posn of all n-periodic tree patterns with positive topological entropy and the set Irrn ( Posn of all n-periodic irreducible tree patterns. The aim of this paper is to determine the elements of minimum entropy in the families Posn and Irrn. Let λn be the unique real root of the polynomial xn − 2x − 1 in (1, +∞). We explicitly construct an irreducible n-periodic tree pattern Qn whose entropy is log(λn). For n = mk, where m is a prime, we prove that this entropy is minimum in the set Posn. Since the pattern Qn is irreducible, Qn also minimizes the entropy in the family Irrn

    A polynomial class of Markus-Yamabe counterexamples

    Get PDF
    In the paper [CEGHM] a polynomial counterexample to the Markus-Yamabe Conjecture and to the discrete Markus-Yamabe Question in dimension n ≥ 3 are given. In the present paper we explain a way for obtaining a family of polynomial counterexamples containing the above ones. Finally we study the global dynamics of the examples given in [CEGHM]

    Linearization of planar homeomorphisms with a compact attractor

    Get PDF
    Kerékjártó proved in 1934 that a planar homeomorphism with an asymptotically stable fixed point is conjugated, on its basin of attraction, to one of the maps z (Formula Present.) depending on whether f preserves or reverses the orientation. We extend this result to planar homeomorphisms with a compact attractor

    Periodic orbits in complex Abel equation

    Get PDF
    This paper is devoted to prove two unexpected properties of the Abel equation dz/dt = z 3 +B(t)z 2 +C(t)z, where B and C are smooth, 2π−periodic complex valuated functions, t ∈ R and z ∈ C. The first one is that there is no upper bound for its number of isolated 2π−periodic solutions. In contrast, recall that if the functions B and C are real valuated then the number of complex 2π−periodic solutions is at most three. The second property is that there are examples of the above equation with B and C being low degree trigonometric polynomials such that the center variety is formed by infinitely many connected components in the space of coefficients of B and C. This result is also in contrast with the characterization of the center variety for the examples of Abel equations dz/dt = A(t)z 3 + B(t)z 2 studied in the literature, where the center variety is located in a finite number of connected components

    A note on the Lyapunov and period constants

    Get PDF
    It is well known that the number of small amplitude limit cycles that can bifurcate from the origin of a weak focus or a non degenerated center for a family of planar polynomial vector fields is governed by the structure of the so called Lyapunov constants, that are polynomials in the parameters of the system. These constants are essentially the coefficients of the odd terms of the Taylor development at zero of the displacement map. Although many authors use that the coefficients of the even terms of this map belong to the ideal generated by the previous odd terms, we have not found a proof in the literature. In this paper we present a simple proof of this fact based on a general property of the composition of one-dimensional analytic reversing orientation diffeomorphisms with themselves. We also prove similar results for the period constants. These facts, together with some classical tools like the Weirstrass preparation theorem, or the theory of extended Chebyshev systems, are used to revisit some classical results on cyclicity and criticality for polynomial families of planar differential equations
    corecore