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Universitat Rovira i Virgili, Tarragona, Spain

Abstract. In this paper we study the period function of ẍ = (1+x)p−(1+x)q, with p, q ∈ R and p > q.
We prove three independent results. The first one establishes some regions in the parameter space where
the corresponding center has a monotonous period function. This result extends the previous ones by
Miyamoto and Yagasaki for the case q = 1. The second one deals with the bifurcation of critical periodic
orbits from the center. The third one is addressed to the critical periodic orbits that bifurcate from the
period annulus of each one of the three isochronous centers in the family when perturbed by means of a
one-parameter deformation. These three results, together with the ones that we obtained previously on
the issue, leads us to propose a conjectural bifurcation diagram for the global behaviour of the period
function of the family.

1 Introduction and setting of the problem

In the present paper we study the bifurcation diagram of the period function associated to a family of
potential centers. Recall that a singular point p of an analytic vector field X = f(x, y)∂x + g(x, y)∂y is
a center if it has a punctured neighbourhood that consist entirely of periodic orbits surrounding p. The
largest neighbourhood with this property is called period annulus and henceforth it will be denoted by P.
From now on ∂P will denote the boundary of P after embedding it into RP2. Clearly the center p belongs
to ∂P, and in what follows we will call it the inner boundary of the period annulus. We also define the
outer boundary of the period annulus to be Π := ∂P \ {p}. Note that Π is a non-empty compact subset
of RP2. The period function of the center assigns to each periodic orbit in P its period. If the period
function is constant, then the center is said to be isochronous. Since the period function is defined on the
set of periodic orbits in P, in order to study its qualitative properties usually the first step is to parametrize
this set. This can be done by taking an analytic transverse section to X on P, for instance an orbit of the
orthogonal vector field X⊥. If {γs}s∈(a,b) is such a parametrization, then s 7−→ T (s) :={period of γs} is an
analytic map that provides the qualitative properties of the period function that we are concerned about.
In particular the existence of critical periods, which are isolated critical points of this function, i.e. ŝ ∈ (a, b)
such that T ′(s) = α(s− ŝ)k + o

(
(s− ŝ)k

)
with α 6= 0 and k > 1. In this case we shall say that γŝ is a critical

periodic orbit of multiplicity k of the center. One can readily see that this definition does not depend on the
particular parametrization of the set of periodic orbits used. We say that the period function of a center is
monotonous increasing (respectively, decreasing) if there are no critical periodic orbits on P and, for any
two periodic orbits γ1 and γ2 with γ1 ⊂ Int(γ2), the period of γ2 is greater (respectively, smaller) than the
one of γ1.
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Figure 1: Monotonicity regions according to Theorem A.

The problem of bounding the number of critical periodic orbits is analogous to the problem of bounding
the number of limit cycles, which is related to the well known Hilbert’s 16th Problem (see [1, 7, 20, 25]
and references there in) and its various weakened versions. Questions related to the behaviour of the
period function have been extensively studied by a number of authors. Let us quote for instance the
problems of isochronicity (see [6,13,17]), monotonicity (see [3,4,22]) or bifurcation of critical periodic orbits
(see [5, 21,23]).

In this paper we consider the two-parameter family of potential differential systems given by

Xµ

{
ẋ = −y,
ẏ = (1 + x)p − (1 + x)q,

(1)

where µ := (q, p) with p, q ∈ R. This is a well defined analytic differential system on the half plane {x > −1}.
The singular point at the origin is a non-degenerated center if p > q and a hyperbolic saddle if p < q. Our
goal in this paper is to provide a global study of the qualitative properties of the period function of the
center, so we will consider Xµ with µ ∈ Λ := {(q, p) ∈ R2 : p > q}. We became interested in this problem
because of the previous results by Miyamoto and Yagasaki on the issue. Both authors proved, see [18],
that the period function is monotonous when q = 1 and p ∈ N. As it often occurs, they came across the
period function when studying the solutions of an elliptic Neumann problem and needed this monotonicity
property to prove a bifurcation result. Later Yagasaki improved the result showing in [24] the monotonicity
of the period function for q = 1 and any p ∈ R with p > 1. We will prove three main results on the period
function of the family {Xµ}µ∈Λ. The first one, Theorem A, establishes some regions in the parameter space
where the corresponding center has a monotonous period function. This result extends the previous ones by
Miyamoto and Yagasaki [18,24]. The second one, Theorem B, deals with the bifurcation of critical periodic
orbits from the inner boundary of P, i.e., the center. Finally Theorem C is addressed to the bifurcation of
critical periodic orbits from the interior of the period annulus of an isochronous center. These three results,
together with the ones that we obtained in [14] concerning the bifurcation of critical periodic orbits from
the outer boundary of P, leads us to propose a conjectural bifurcation diagram for the global behaviour of
the period function of {Xµ}µ∈Λ. We will explain it in detail at the end of this section once we state precisely
our main results.

Let us begin with the statement of the monotonicity result. To this end we define

Θ(µ) := 2p4 + p3(3 + 4q) + p2(9q2 + 9q − 1) + p(4q3 + 9q2 + 2q − 3) + (1 + q)2(2q2 − q − 1). (2)

Then, denoting the light grey region in Figure 1 by MI and the dark grey region by MD, we will prove the
following result:

Theorem A. The period function of the center at the origin of the potential differential system (1) is
monotonous increasing (respectively, decreasing) in case that µ ∈MI (respectively, µ ∈MD).
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In order to state the results about the bifurcation of critical periodic orbits it is first necessary to recall
the definition of criticality given in [8].

Definition 1.1. Let U be a subset of Rn and consider an analytic family {Yµ}µ∈U of planar vector fields
with a center. Fix some µ̂ ∈ U and consider an invariant set L of Yµ̂. If L is compact, then criticality of the
pair (L, Yµ̂) with respect to the deformation Yµ is the smallest integer NL having the property that there
exist a neighbourhood V of L and δ > 0 such that, for every µ ∈ U with ‖µ − µ̂‖ < δ, the vector field Yµ
has no more than NL critical periodic orbits inside V . For a general set L, not necessary compact, we define

Crit ((L, Yµ̂), Yµ) := sup{NK : K ⊂ L,K is a compact invariant set of Yµ̂}

to be the criticality of the pair (L, Yµ̂) with respect to the deformation Yµ. �

Roughly speaking, the criticality Crit ((L, Yµ̂), Yµ) is the maximal number of critical periodic orbits that
tend to L as µ→ µ̂. The ultimate aim in the study of the global behaviour of the period function of a given
family {Yµ}µ∈U is to decompose the parameter space U = ∪Ui in such a way that if µ1 and µ2 belong to
the same set Ui, then the corresponding period functions are qualitatively the same. The set ∪∂Ui consists
of those parameters µ̂ ∈ U for which some critical periodic orbit emerges or disappears as µ tends to µ̂.
There are three different places from where a critical periodic orbit may bifurcate (see [16] for details):

(1) The inner boundary of the period annulus (i.e., the center itself),

(2) the “interior” of the period annulus, or

(3) the outer boundary of the period annulus.

In the present paper we shall study the first and second type of bifurcation inside the family {Xµ}µ∈Λ

given in (1), but the later only in the particular case that the unperturbed system Xµ̂ has an isochronous
center. In this regard we point out that the study when the unperturbed system is not isochronous is out
of reach for the moment. Its counterpart in the context of Hilbert’s 16th Problem is the so-called blue-sky
bifurcation of a semi-stable limit cycle, which is usually undetectable (see [19] for instance). As we already
mentioned, the third type of bifurcation inside {Xµ}µ∈Λ was the subject of a previous paper [14]. That
being said, let {Yµ}µ∈U be an analytic family of vector fields such that, for each µ ∈ U , Yµ has a center at
pµ ∈ R2. Fixed µ̂ ∈ U , the following definition is addressed to the cases: (1) L = pµ̂, (2) L = Pµ̂ with pµ̂
an isochronous center, and (3) L = Πµ̂ = ∂Pµ̂ \ {pµ̂}.

Definition 1.2. Let L be an invariant set of Yµ̂. We say that µ̂ is a local regular value of the period function
at L if Crit ((L, Yµ̂), Yµ) = 0, otherwise µ̂ is a local bifurcation value of the period function at L. �

Taking this definition into account, we will prove the following result concerning the bifurcation of critical
periodic orbits from the center:

Theorem B. Let {Xµ}µ∈Λ be the family of vector fields in (1) and consider the period function of the
center at the origin. Define ∆1(µ) = 2p2 + 2q2 + 7pq− p− q− 1. Then the set {µ ∈ Λ : ∆1(µ) 6= 0} consists
of local regular values of the period function at the inner boundary of the period annulus. In addition,

(a) If ∆1(µ̂) > 0, then the period function of Xµ̂ is increasing near the inner boundary.

(b) If ∆1(µ̂) < 0, then the period function of Xµ̂ is decreasing near the inner boundary.

Finally if ∆1(µ̂) = 0, then the criticality of ((0, 0), Xµ̂) with respect to the deformation Xµ is one. In
particular, µ̂ is a local bifurcation value of the period function at the inner boundary.

In our third main result we study the critical periodic orbits that bifurcate from the period annulus of
an isochronous center Xµ̂ when perturbed by means of a one-parameter deformation inside {Xµ}µ∈Λ. We
will prove the following:
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Figure 2: Bifurcation diagram of the period function at the inner boundary (left) and at the outer boundary
(right), according to Theorem C and Theorem 1.3, respectively.

Theorem C. The center at the origin of the differential system in (1) is isochronous if, and only if,
µ ∈ {(−3, 1), (−1/2, 0), (0, 1)}. Moreover, if µ̂ is the parameter value of one of these isochronous centers
and µ 7−→ µ(ε) is any germ of analytic curve in Λ with µ(0) = µ̂, then Crit ((Pµ̂, Xµ̂), Xµ(ε)) 6 1. Finally,
for each isochronous center, there exists a germ of analytic curve for which this upper bound is achieved.

We expect of course that Crit ((Pµ̂, Xµ̂), Xµ) = 1 for any µ ∈ {(−3, 1), (−1/2, 0), (0, 1)}. In relation to
this, but in the context of Hilbert’s 16th Problem, it is to be quoted the result of L. Gavrilov [9], which shows
that the problem of finding the cyclicity of a period annulus with respect to a multi-parameter deformation
can be always reduced to the “simpler” problem of finding the cyclicity with respect to a one-parameter
deformation.

For completeness, we give at this point the precise statement of our result in [14], which constitutes the
counterpart of Theorem B for the behaviour of the period function near the outer boundary of P. To this
end, let us denote

ΓB := {µ ∈ Λ : q = 0} ∪ {µ ∈ Λ : p = 1, q 6 −1} ∪ {µ ∈ Λ : p+ 2q + 1 = 0, q > −1}

and

ΓU := {µ ∈ Λ : (2q + 1)(3q + 1)(q + 1)(p+ 1) = 0}.

(Here the subscripts B and U stand for bifurcation and unspecified, respectively.) The curve ΓB splits
the parameter space Λ into three connected components, see Figure 2. Denoting by DB the uncoloured
component and by IB the union of the two other components in dark grey, by [14, Theorem E] we have:

Theorem 1.3. Let {Xµ}µ∈Λ be the family of vector fields in (1) and consider the period function of the
center at the origin. Then the set Λ \ (ΓB ∪ΓU ) corresponds to local regular values of the period function at
the outer boundary of the period annulus. In addition,

(a) If µ̂ ∈ IB \ ΓU then the period function of Xµ̂ is increasing near the outer boundary.

(b) If µ̂ ∈ DB \ ΓU then the period function of Xµ̂ is decreasing near the outer boundary.

Moreover the parameters in ΓB are local bifurcation values of the period function at the outer boundary of
the period annulus. Finally, Crit((Πµ̂, Xµ̂), Xµ) = 1 for all µ̂ = (q̂, 1) with q̂ < −3 and µ̂ = (q̂,−2q̂ − 1)
with q̂ ∈ (− 3

5 ,− 1
3 ) \ {− 1

2}.

The combination of the three main results proved in the present paper, together with Theorem 1.3, leads
us to propose the conjectural bifurcation diagram that we display in Figure 3 for the global behaviour of
the period function of the differential system (1). This conjecture claims in particular, and it constitutes
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Figure 3: Conjectural bifurcation diagram for the period function of the differential system (1), where the
solid and dotted curves consist of local bifurcation values at the outer and inner boundary, respectively.
The parameters in the grey region correspond to systems with exactly one critical periodic orbit.

the key point, that there are no parameters for which two critical periodic orbits collide disappearing in the
interior of the period annulus. Of course there are points in the conjecture already proved. For instance
Theorem A covers in large part the uncoloured region in Figure 3, where the monotonicity of the period
function is conjectured. On the other hand, a straightforward application of Bolzano’s Theorem, comparing
the sign of the derivative of the period function near the inner and outer boundary of P, shows that if µ
belongs to the grey region in Figure 3, then the period function of Xµ has at least one critical periodic orbit.

The paper has three additional sections, each one dedicated to prove one of the main results. For reader’s
convenience we advance that the three sections are essentially independent.

2 Proof of Theorem A

This section is devoted to prove Theorem A, but before we introduce the notation that we will use henceforth.
Consider a potential differential system

X

{
ẋ = −y,
ẏ = V ′(x),

where V is an analytic function on some interval I that contains x = 0. In what follows we shall use
sometimes the vector field notation X = −y∂x+V ′(x)∂y to refer the above differential system. We suppose
V ′(0) = 0 and V ′′(0) > 0, so that the origin is a non-degenerated center, and we shall denote the projection
of its period annulus P on the x-axis by I = (x`, xr). Thus x` < 0 < xr. The corresponding Hamiltonian
function is given by H(x, y) = 1

2y
2 + V (x), where we fix that V (0) = 0. Then H(P) = (0, h0), with

h0 ∈ (0,+∞], and in this case we will say that h0 is the energy level of the outer boundary of P. We define
in addition

g(x) := sgn(x)
√
V (x) = x

√
V (x)

x2
,

which is clearly an analytic diffeomorphism from I to (−
√
h0,
√
h0). It is well-known, see [5,15] for instance,

that the period T (h) of the periodic orbit γh inside the energy level {H(x, y) = h} is given by

T (h) =

∫

γh

dx

y
=
√

2

∫ π
2

−π2
(g−1)′(

√
h sin θ)dθ,

where the definite integral follows by using the polar coordinates that bring the oval γh ⊂ { 1
2y

2 +V (x) = h}
to the circle of radius

√
h. The period function T is analytic on (0, h0) and it can be extended analytically

at h = 0. In what follows we shall consider a potential differential system depending on a parameter µ ∈ Λ
and we shall use the previous notations with a subscript µ.
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Figure 4: Bifurcation diagram of the graph of Vµ.

For the potential differential system (1) under consideration we have µ = (q, p) and

Vµ(x) :=

∫ x+1

1

(up − uq) du.

Clearly the origin is a centre for all µ ∈ Λ because V ′′(0) = p− q > 0. Note that Λ = Λ1 ∪ Λ2 ∪ Λ3 with

Λ1 := {µ ∈ Λ : −1 < q < p}, Λ2 := {µ ∈ Λ : q 6 −1 6 p} and Λ3 := {µ ∈ Λ : q < p < −1}.

The next result is a straightforward observation and we do not show it for the sake of shortness.

Lemma 2.1. The projection on the x-axis of the period annulus Pµ of the center at the origin of (1) is
Iµ = (−1, ρ(µ)) for µ ∈ Λ1, Iµ = (−1,+∞) for µ ∈ Λ2 and Iµ = (ρ(µ),+∞) for µ ∈ Λ3, where

ρ(µ) :=

(
p+ 1

q + 1

) 1
p−q
− 1.

The proof of Theorem A will be an application of the following monotonicity criterion, see [22], and in
its statement we use the previous notation.

Theorem 2.2 (Schaaf’s criterion). Let X = −y∂x + V ′(x)∂y be an analytic potential differential system
with a non-degenerated center at the origin and consider its period function T (h). Then T ′(h) > 0 for all
h ∈ (0, h0) in case that

(I1) 5V ′′′(x)2 − 3V ′′(x)V (4)(x) > 0 for all x ∈ I with V ′′(x) > 0,

and

(I2) V ′(x)V ′′′(x) < 0 for all x ∈ I with V ′′(x) = 0.

On the other hand, T ′(h) < 0 for all h ∈ (0, h0) in case that

(D) 5V ′′′(x)2 − 3V ′′(x)V (4)(x) < 0 for all x ∈ I with V ′′(x) > 0.

The key point to apply Schaaf’s criterion to the potential differential system Xµ given in (1) is that, as
one can easily verify, we can write the “test functions” as

5V ′′′µ (x)2 − 3V ′′µ (x)V (4)
µ (x) = (1 + x)2q−4Pµ

(
(1 + x)p−q

)
,

V ′µ(x)V ′′′µ (x) = (1 + x)2q−2Qµ
(
(1 + x)p−q

)
,

V ′′µ (x) = (1 + x)q−1Rµ
(
(1 + x)p−q

)
,
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with

Pµ(z) := (q − 1)q2(1 + 2q) + pq(3p2 + 3q2 − 10pq + p+ q + 2)z + (p− 1)p2(1 + 2p)z2,

Qµ(z) := q(q − 1) + (p− p2 + q − q2)z + p(p− 1)z2,

and Rµ(z) := −q + pz. Accordingly we get the following result:

Lemma 2.3. The conditions (I1), (I2) and (D) of Schaaf’s monotonicity criterion applied to the potential
differential system (1) are equivalent to

(I ′1) Pµ(z) > 0 for any z ∈ ϕ(Iµ) with Rµ(z) > 0,

(I ′2) Qµ(z) < 0 for any z ∈ ϕ(Iµ) with Rµ(z) = 0,

(D′) Pµ(z) < 0 for any z ∈ ϕ(Iµ) with Rµ(z) > 0,

respectively, where ϕ(x) := (1 + x)p−q.

Moreover, taking Lemma 2.1 into account, we obtain:

Lemma 2.4. Define Lµ = {z ∈ ϕ(Iµ): Rµ(z) > 0}. Then

(a) Lµ =
(
q
p ,

p+1
q+1

)
if µ ∈ Λ ∩ {q > 0},

(b) Lµ =
(

0, p+1
q+1

)
µ ∈ Λ ∩ {p > 0,−1 < q 6 0} or µ ∈ Λ ∩ {p < 0, p+ q > −1},

(c) Lµ = (0,∞) µ ∈ Λ ∩ {p > 0, q < −1},

(d) Lµ =
(

0, qp

)
if µ ∈ Λ ∩ {p < 0, q > −1, p+ q 6 −1} or µ ∈ Λ ∩ {q < −1,−1 < p < 0},

(e) Lµ =
(
p+1
q+1 ,

q
p

)
if µ ∈ Λ ∩ {p < −1}.

Lemma 2.5. The potential differential system (1) verifies condition (I1) of Schaaf’s criterion if µ is inside
the region 1, 8, 10, 11, 14 or 15 in Figure 5. On the other hand, it verifies condition (D) if µ is inside the
region 5 or 7.

Proof. By applying Lemmas 2.3 and 2.4, the first assertion is equivalent to require that the quadratic
polynomial Pµ is positive on the interval Lµ. For each µ ∈ Λ, let us define Z(µ) to be the number of zeros
of Pµ inside Lµ counted with multiplicities. The relevant information to study this number is given by the
following expressions:

Disc(Pµ) = 3p2(p− q)2q2(3p2 + 3q2 − 14pq + 2p+ 2q + 7),

Pµ(0) = (q − 1)q2(1 + 2q),

Pµ

(
q

p

)
= 5(p− q)2q2,

Pµ(∞) = (p− 1)p2(1 + 2p),

Pµ

(
p+ 1

q + 1

)
= (p− q)2(1 + q)−2Θ(µ),

where Θ is defined in (2), Disc(Pµ) denotes the discriminant of Pµ and Pµ(∞) stands for the coefficient
of maximum degree of Pµ. The zero level sets of these functions split the parameter space Λ into several
connected components and it is clear that Z(µ) is constant in each one. In this regard it is to be pointed
out that if Disc(Pµ) = 0 then one can verify that the corresponding double root is outside Lµ. On account
of this, in order to study Z(µ) we can rule out the curve Disc(Pµ) = 0. We obtain in this way 15 connected
components, that we display in Figure 5. It is clear that if U is one of these regions and Pµ is positive on
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Figure 5: Sketch of the regions in the proof of Lemma 2.5.

Lµ for some µ = µ̂ ∈ U , then the same is true for all the parameters µ ∈ U . Choosing one parameter inside
each one of the 15 regions we prove that this is the case for the regions 1, 8, 10, 11, 14 and 15. This proves
the first assertion.

Let us turn now to the second assertion. Thanks to Lemmas 2.3 and 2.4 again, condition (D) is equivalent
to require that Pµ is negative on the interval L̂µ, where L̂µ := Lµ in case that q/p is not an endpoint of Lµ
and L̂µ := Lµ∪{q/p} otherwise. (This follows from noting that Rµ(z) = 0 if, and only if, z = q/p.) Arguing
as we did with condition (I1) one can show that this is the case for the parameters inside regions 5 and 7.
This proves the result.

Proof of Theorem A. We claim that if (q, p) ∈ Λ verifies pq > 0, then the potential differential system (1)
satisfies condition (I2) of Schaaf’s criterion. Indeed, this follows by applying Lemma 2.3 and noting that
Rµ(z) = 0 if, and only if, z = q/p and Qµ(q/p) = −q(p− q)2/p < 0 when pq > 0.

On account of the claim and Lemma 2.5, we can assert that the potential differential system (1) verifies
conditions (I1) and (I2) if µ = (q, p) is inside, see Figure 5, the union of the regions 1, 10, 11, 14 and 15,
say RI . Accordingly, by applying Theorem 2.2, we can assert that the derivative of the period function is
strictly positive in case that µ ∈ RI . Note at this point, see also Figure 2, that MI \ RI is the union of
three segments, say `1, `2 and `3. Since one can easily verify that (I1) and (I2) are fulfilled in `1 ∪ `2 ∪ `3
as well, the result concerning the set MI follows.

Finally, Lemma 2.5 shows that the parameters inside the union of the regions 5 and 7, say RD, satisfy
condition (D) of Schaaf’s criterion. Therefore, the derivative of the period function of the center at the
origin of system (1) is negative for µ ∈ RD. Observe that MD \RD is the segment (−1/2, 0)×{0}. Since one
can easily verify that condition (D) also holds for parameters inside this segment, the result concerning MD

follows. This completes the proof of the result.
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3 Proof of Theorem B

The linear part of the differential system (1) at the center depends on the parameters p and q. Since this is
not very convenient in order to compute the period constants of a center, instead of Xµ we shall consider

X̂µ

{
u̇ = −v,
v̇ = 1

p−q ((1 + u)p − (1 + u)q) .
(3)

One can verify that if µ ∈ Λ, i.e., p − q > 0, then coordinate transformation {u = x, v = 1√
p−qy} and the

constant rescaling of time by 1√
p−q brings system (1) to (3). This of course guarantees that the properties

of the period function that we are interested in do not change at all. Note that linear part of the differential
system (3) at the center does not depend on the parameters because, following the obvious notation,

V̂µ(u) :=
1

p− q

∫ u+1

1

(sp − sq) ds =
1

2
u2 + o(u2).

The differential system (3) has the additional advantage that it is well-defined for all (q, p) ∈ R2, even for
the straight line p = q, where it has the expression

X̂q,q

{
u̇ = −v,
v̇ = (1 + u)q log(1 + u).

Observe in addition the symmetry X̂q,p = X̂p,q. Note finally that the projection of the period annulus of
the center is the same interval for the differential systems (1) and (3). Thus, for the sake of simplicity, we
shall keep denoting it by Iµ.

Proposition 3.1. Let T̂µ(h) denote the period of the periodic orbit of system (3) inside the energy level
1
2v

2 + V̂µ(u) = h. Then, setting T̂µ(0) := 2π, T̂µ(h) extends analytically at h = 0 and its Taylor development

is given by T̂µ(h) = 2π +
∑
i>1 ∆i(µ)hi with ∆i ∈ R[µ]. Moreover,

∆1(µ) = π
(
2p2 + 2q2 + 7pq − p− q − 1),

∆2(µ) =
5π

24
(−23 + 4p4 − 46q + 21q2 + 44q3 + 4q4 + 4p3(11 + 43q)+

+ 3p2(7 + 122q + 139q2) + 2p(−23 + 42q + 183q2 + 86q3)
)
,

∆3(µ) =
7π

864

(
−11237− 1112p6 − 33711q − 10641q2 + 34903q3 + 22434q4

− 636q5 − 1112q6 + 12p5(−53 + 803q) + 6p4(3739 + 25888q + 27289q2)

+ p3(34903 + 390273q + 734277q2 + 336347q3)

+ 3p2(−3547 + 88309q + 284637q2 + 244759q3 + 54578q4)

+ 3p(−11237− 2951q + 88309q2 + 130091q3 + 51776q4 + 3212q5)
)
.

Proof. We claim that V̂µ(u) =
∑
k>2 α̂k(µ)uk with α̂k ∈ R[µ] and α̂2(µ) = 1

2 . To show this note first of all

that V̂ ′µ(u) = 1
p−q

∑
k>1 k!αk(µ)uk with

αk(q, p) := p
(
p− 1

)
· · ·
(
p− (k − 1)

)
− q
(
q − 1

)
· · ·
(
q − (k − 1)

)
.

Since αk(q, p) ∈ R[q, p] and αk(q, q) = 0, we can assert that α̂k+1(p, q) = k!αk(q,p)
(k+1)(p−q) ∈ R[q, p]. This proves

the validity of the claim because the fact that α̂2(p, q) = 1
2 is clear.
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Let us define ĝµ(x) := sgn(x)
√
V̂µ(x) and suppose that the Taylor development of its inverse at x = 0 is

given by ĝ−1
µ (x) =

∑
k>1 βk(µ)xk. Then, see for instance [5], it follows that

T̂µ(h) =
√

2

∫ π
2

−π2
(ĝ−1
µ )′(

√
h sin θ)dθ =

∑

k>0

∆k(µ)hk with ∆k(µ) := 2
√

2(2k + 1)β2k+1(µ)

∫ π
2

−π2
sin2kθdθ.

Since one can easily verify that β1(µ) = 1√
2
, the above expression shows in particular that T̂µ(h) extends

analytically to h = 0 setting T̂µ(0) := 2π. It shows moreover that ∆k ∈ R[µ] if, and only if, β2k+1 ∈ R[µ].
Let us show that βk ∈ R[µ] for all k ∈ N. To this end we note that, by definition, Vµ

(
ĝ−1
µ (x)

)
= x2 for all

x ∈ Iµ. Hence
∞∑

k=2

α̂k(µ)

( ∞∑

i=1

βi(µ)xi

)k
= x2 for all x ≈ 0.

Using this identity and taking the claim into account, one can prove by induction on k that βk ∈ R[µ] for
all k ∈ N. Therefore ∆k ∈ R[µ] for all k ∈ N. Finally the expression for ∆1, ∆2 and ∆3 that we give in the
statement can be easily computed following this approach by using a symbolic manipulator. This concludes
the proof of the result.

Next result of Cima, Mañosas and Villadelprat, see [6], provides a useful tool in order to study the
isochronicity problem for a center of a potential differential system. It is given in terms of the existence of
an involution, i.e., a function σ 6= Id such that σ2 = Id.

Proposition 3.2. Let V be an analytic function with V (0) = 0 and suppose that X = −y∂x + V ′(x)∂y
has a center at the origin. Let I be the projection of its period annulus on the x-axis. Then the origin
is an isochronous center of period ω if, and only if, there exists an analytic involution σ on I such that

V (x) = π2

2ω2

(
x− σ(x)

)2
.

For a given ideal m over C[x] we shall denote by V (m) the complex variety of m. The next result solves
in particular the isochronicity problem in the family of centers under consideration. In its statement ∆1,
∆2 and ∆3 are the period constants given in Proposition 3.1.

Theorem 3.3. Define µ1 := (−3, 1), µ2 := (−1/2, 0), µ3 := (0, 1), µ4 := (1,−3), µ5 := (0,−1/2), µ6 := (1, 0)
and µ7 := (i/

√
3,−i/

√
3). Then the following holds:

(a) The variety of the ideal m2 := (∆1,∆2) is V (m2) = {µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ̄7}.
(b) The variety of the ideal m3 := (∆1,∆2,∆3) is V (m3) = {µ1, µ2, µ3, µ4, µ5, µ6}.

Moreover, the center at the origin of the differential system (3) is isochronous if, and only if, µ ∈ V (m3).

Proof. The assertions in (a) and (b) can be proved with a symbolic manipulator, for instance using resul-
tants. Let us prove the assertion concerning the isochronous centers of system (3). Clearly the necessity
follows by definition, so we only need to show the sufficiency, i.e., if µ ∈ V (m3) then the center is isochronous.
To this end, taking advantage of the symmetry X̂(q,p) = X̂(p,q), it suffices to show that µ1, µ2 and µ3 cor-
respond to isochronous centers. With this end in view, some easy computations show that σ1(x) := − x

x+1 ,

σ2(x) := 4 + x − 4
√
x+ 1, and σ3(x) := −x are the involutions associated to V̂µi for i = 1, 2, 3, respec-

tively (i.e., such that V̂µi = V̂µi ◦ σi). Finally the result follows by Proposition 3.2 after verifying that

V̂µi(x) = 1
8 (x− σi(x))

2
for i = 1, 2, 3.

To study the criticality of the center at the origin, see Definition 1.1, we must parametrize the periodic
orbits of the differential system near the center. To this end, since we deal with a Hamiltonian differential
system, we use the energy level h of the periodic orbit. Then, to detect the critical periodic orbits that
shrink or emerge from the center we analyse the Taylor development of the period function T̂µ(h) at h = 0.
In the statement of the next result ∆1 is the first period constant, see Proposition 3.1, and µi, i = 1, 2, . . . , 6,
are the parameters corresponding to isochronous centers of system (3), see Theorem 3.3.
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Proposition 3.4. The following holds:

(a) If ∆1(µ̂) 6= 0 with µ̂ ∈ R2, then Crit (((0, 0), X̂µ̂), X̂µ) = 0. Moreover, if ∆1(µ̂) is positive (respectively,

negative), then the period function of X̂µ̂ is increasing (respectively, decreasing) near the center.

(b) If ∆1(µ̂) = 0 with µ̂ ∈ R2 \ {µ1, µ2, µ3, µ4, µ5, µ6}, then Crit (((0, 0), X̂µ̂), X̂µ) = 1.

Proof. Let T̂µ(h) denote the period of the periodic orbit of the differential system (3) inside the energy

level 1
2v

2 + V̂µ(u) = h. Then, by Proposition 3.1, we have that

T̂ ′µ(h) = ∆1(µ) + 2∆2(µ)h+ o(h). (4)

Clearly, if ∆1(µ̂) 6= 0, then there exist ε > 0 and an open neighbourhood U of µ̂ such that T̂ ′µ(h) 6= 0

for all h ∈ (0, ε) and µ ∈ U . This implies Crit (((0, 0), X̂µ̂), X̂µ) = 0 and proves (a) because the assertion
concerning the monotonicity of the period function is trivial.

In order to show (b) note that if ∆1(µ̂) = 0 with µ̂ ∈ R2 \ {µ1, µ2, µ3, µ4, µ5, µ6} then, by Theorem 3.3,
∆2(µ̂) 6= 0. Hence, from (4) and by applying the Implicit Function Theorem, Crit (((0, 0), X̂µ̂), X̂µ) 6 1.
The fact that this upper bound is achieved follows the same way using that the gradient of ∆1 does not
vanish for parameter values with ∆1(µ) = 0. So the result is proved.

The study of the criticality at the isochronous centers is the last ingredient for the proof of Theorem B.
Our approach strongly relies in the following two general results of Chicone and Jacobs [5].

Theorem 3.5. Let {Yµ}µ∈Λ be an analytic family of analytic Hamiltonian differential systems with a non-
degenerate center at the origin. Let Hµ be the Hamiltonian function with Hµ(0, 0) = 0. Let Tµ(h) denote the
period of the periodic orbit of Yµ inside the energy level Hµ = h and let Tµ(h) =

∑∞
i=0 ∆i(µ)hi be its Taylor

development at h = 0. If the center is isochronous for µ = µ̂ and if, for all i ∈ N, ∆i is inside the ideal
(∆1,∆2, . . . ,∆k+1) over R{µ}µ̂, the ring of convergent power series at µ̂, then Crit (((0, 0), Yµ̂), Yµ) 6 k.
Moreover, if the gradients of ∆1,∆2, . . . ,∆k+1 are linearly independent at µ̂, then Crit (((0, 0), Yµ̂), Yµ) = k.

The previous result is an adaptation of the Isochrone Bifurcation Theorem in [5] to Hamiltonian systems,
for which it is more natural to parametrize the periodic orbits with the energy instead of the intersection
point with the positive x-axis, and to the definition of criticality that we use in this paper. The proof
is omitted because it follows verbatim the one Chicone and Jacobs. The next result is a particular case
of [5, Theorem A.1].

Proposition 3.6. Suppose that the ideal m = (f1, . . . , fr) ⊂ C[x1, x2, . . . , xn] satisfies that V (m) is a finite
set and that rank (∇f1(a),∇f2(a), . . . ,∇fr(a)) = n for all a ∈ V (m). Then m is radical, i.e., f ∈ m if, and
only if, f

(
V (m)

)
= 0.

Proposition 3.7. Let X̂µ be the differential system in (3) and let µi ∈ Λ, i = 1, 2, . . . , 6, be the parameters

corresponding to the isochronous centers. Then Crit (((0, 0), X̂µi), X̂µ) = 1 for i = 1, 2, . . . , 6.

Proof. We apply Proposition 3.1 and consider the ideal m := (∆1,∆2) over C[q, p]. Then, by Theorem 3.3
we have that V (m) = {µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ̄7}. One can verify in addition that the gradients of ∆1 and
∆2 are linearly independent at any µ ∈ V (m). Thus, by applying Proposition 3.6, m is radical over C[q, p].
We claim that if fk(µ) := (3p2 +3q2 +2)∆k(µ), then fk

(
V (m)

)
= 0 for all k > 3. Indeed, that fk(µi) = 0 for

i = 1, 2, . . . , 6 follows due to the fact that, by Theorem 3.3, the center of X̂µi is isochronous. We have on the
other hand that fk(µ7) = 0 and fk(µ̄7) = 0 because these two parameters are the roots of 3p2 + 3q2 + 2 = 0.
This proves the claim. Consequently fk ∈ m for all k > 3. Thus, for each k > 3, there exist Ak, Bk ∈ C[q, p]
such that fk = Ak∆1 +Bk∆2, so that

∆k(q, p) =
Ak(q, p)

3p2 + 3q2 + 2
∆1(q, p) +

Bk(q, p)

3p2 + 3q2 + 2
∆2(q, p) for all k > 3.

Fix any µi, i = 1, 2, . . . , 6. Then, since 3p2 + 3q2 + 2 6= 0 at µ = µi, the above equality shows that ∆k ∈ m
over the local ring R{µ}µi for all k > 3. (Here we use that ∆i ∈ R[µ].) Hence, by applying Theorem 3.5,

Crit (((0, 0), X̂µi), X̂µ) = 1. So the result is proved.
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Proof of Theorem B. As we mentioned at the beginning of the present section, any differential system (1)
with p > q can be brought to (3) by means of a conjugation and a constant rescaling of time. On account
of this, the result follows by applying Propositions 3.4 and 3.7.

4 Proof of Theorem C

By applying Theorem 3.3 we know in particular that µ1 = (−3, 1), µ2 = (−1/2, 0) and µ3 = (0, 1) are
the parameters corresponding to the isochronous centers of the family {Xµ, µ ∈ Λ} in (1). In this section
we shall consider each one of these isochronous centers and we shall study the emergence or disappearance
of critical periodic orbits from its period annulus when we perturb it inside {Xµ, µ ∈ Λ} by means of a
one-parameter deformation. In order to study this problem we recall the following definitions:

Definition 4.1. We say that two planar vector fields commute on U ⊂ R2 if they are transversal and the
Lie bracket [X,Y ] vanishes identically on U . �

Definition 4.2. Let ϕ : M −→ N be a diffeomorphism between manifolds M and N and let X and Y be
vector fields on M and N , respectively. The pull back of Y by ϕ is the vector field ϕ∗Y on M defined by
(ϕ∗Y )(p) := (Dϕ−1)ϕ(p)Y

(
ϕ(p)

)
for all p ∈ M. The push forward of X by ϕ is the vector field ϕ∗X on N

defined by (ϕ∗X)(p) := (Dϕ)ϕ−1(p)X
(
ϕ−1(p)

)
for all p ∈ N. �

Suppose that X is an analytic vector field with a center at p. It is well known, see [2] and references there
in, that p is an isochronous center if, and only if, there exists an analytic vector field Y on a neighbourhood U
of p such that X and Y commute on U \ {p}. In order to prove Theorem C it will be convenient to have a
commutator of each Xµi , i = 1, 2, 3, with U being the whole period annulus Pµi . With this end in view
we prove the following general result for isochronous centers of potential systems:

Proposition 4.3. Let X = −y∂x + V ′(x)∂y be a potential vector field with an isochronous center at the

origin of period ω and let P be its period annulus. Define h(x) := x−σ(x)
2 , where σ is the involution such

that V = V ◦ σ. Then (r, θ) = ϕ(x, y), defined by means of
{
h(x) = r cos θ, ω2πy = r sin θ

}
, is a coordinate

transformation on P and the pull-back of

U = r∂r −
r
∫ θ

0
(h−1)′′(r cos s) cos sds

(h−1)′(r cos θ)
∂θ

by ϕ is an analytic vector field on P that extends analytically to the origin, and commutes with X on P.

Proof. Without loss of generality we assume that ω = 2π. Note that h is a diffeomorphism on the projection

of the period annulus because σ′(x) = V ′(x)

V ′
(
σ(x)
) < 0. We claim that (h−1)′′ is an even function and that

F (r, θ) :=

∫ θ

0

(h−1)′(r cos s)ds

is a circle diffeomorphism of degree one, i.e., F (r, θ + 2π) = F (r, θ) + 2π, for each fixed r. To show this
observe first that h ◦ σ = −h, so that σ(h−1(u)) = h−1(−u). Hence

u = h(h−1
(
u)
)

=
h−1(u)− σ(h−1(u))

2
=
h−1(u)− h−1(−u)

2
.

Accordingly the odd part of the function h−1 is the identity, so we can write h−1(u) = u + G(u), with G
being an even function. In particular this shows that (h−1)′′ is an even function. In addition,

F (r, θ + 2π)− F (r, θ) =

∫ θ+2π

θ

(
h−1

)′
(r cos s)ds = 2π +

∫ θ+2π

θ

G′(r cos s)ds = 2π,
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where the last equality follows by using that G′ is odd. This proves the validity of the claim.

Since the origin is an isochronous center, by Proposition 3.2 we can write V (x) = 1
2h(x)2. Therefore,

X = −y∂x + h(x)h′(x)∂y and an easy computation shows that (u, v) = ϕ1(x, y) :=
(
h(x), y

)
brings X to

ϕ1∗X =
1

(h−1)′(u)

(
−v∂u + u∂v

)
.

Hence, if (r, θ) = ϕ2(u, v) denotes the usual polar coordinates given by {u = r cos θ, v = r sin θ}, we get

(
ϕ2 ◦ ϕ1

)
∗X = ϕ∗X =

1

(h−1)′(r cos θ)
∂θ.

Finally, if (R,φ) = ϕ3(r, θ) :=
(
r, F (r, θ)

)
, then

(
ϕ3 ◦ ϕ

)
∗X = ∂φ because φ′ = d

dtF (r, θ) = Fθ(r, θ)θ
′ = 1.

(At this point we used that θ 7−→ F (r, θ) is a one-degree circle diffeomorphism.) Clearly, a commutator
for ∂φ is given by Û := R∂R, i.e., [

(
ϕ3 ◦ ϕ

)
∗X, Û ] = 0. Then,

0 =
(
ϕ3 ◦ ϕ

)∗[(
ϕ3 ◦ ϕ

)
∗X, Û

]
=
[
X,
(
ϕ3 ◦ ϕ

)∗
Û
]
.

The pull-back of Û by ϕ3 is precisely the vector field U given in the statement because r′ = R′ = R = r
and 0 = φ′ = Fr(r, θ)r

′ + Fθ(r, θ)θ
′. Thus ϕ3

∗Û = U and so the above expression shows that [X,ϕ∗U ] = 0,
as desired.

It remains to be shown that ϕ∗U is an analytic vector field on P ∪ {(0, 0)}. To this end it suffices to
prove that (ϕ2)∗U is an analytic vector field at the origin because ϕ∗U =

(
ϕ2 ◦ ϕ1)∗U = (ϕ1)∗(ϕ2)∗U and

ϕ1 is a well-defined analytic diffeomorphism on P ∪ {(0, 0)}. Note that

(ϕ2)∗U =

(
x+ y

S(x, y)

(h−1)′(x)

)
∂x +

(
y − x S(x, y)

(h−1)′(x)

)
∂y,

where

S(x, y) := r

∫ θ

0

(h−1)′′(r cos s) cos sds

∣∣∣∣∣{
r=
√
x2+y2,θ=arctan(y/x)

} .

Since h′(0) 6= 0, we must show that S is analytic at (x, y) = (0, 0). To this end we use that, on account of
the claim, u 7−→ (h−1)′′(u) is an even function, so we can write (h−1)′′(u) =

∑∞
i=0 βiu

2i for u ≈ 0. Thus,
for r ≈ 0,

r

∫ θ

0

(h−1)′′(r cos s) cos sds =
∞∑

i=0

βir
2i+1

∫ θ

0

cos2i+1 sds =
∞∑

i=0

βir
2i+1 sin θPi(sin

2 θ),

where Pi is a polynomial of degree i. Thanks to the identity sin2 θ + cos2 θ = 1, we can write Pi(sin
2 θ) =

P̂i(cos2 θ, sin2 θ) with P̂i being a homogenous polynomial of degree i. Therefore

r

∫ θ

0

(h−1)′′(r cos s) cos sds =

∞∑

i=0

βir sin θP̂i(r
2 cos2 θ, r2 sin2 θ)

and, consequently, S(x, y) = y
∑∞
i=0 βiP̂i(x

2, y2) for (x, y) ≈ (0, 0). This shows the analyticity of S at the
origin and completes the proof of the result.

Now the desired commutators are given in the following result:

Lemma 4.4. Consider the parameters µ1 = (−3, 1), µ2 = (−1/2, 0) and µ3 = (0, 1) corresponding to the
isochronous centers of the family {Xµ, µ ∈ Λ} in (1). Setting S(x, y) = (x+ 1)2y2 + x(x+ 2)(x2 + 2x+ 2),
define

U1 = S(x,y)
4(x+1)∂x + y(4+S(x,y))

4(x+1)2 ∂y

U2 = (2 + 2x− 2
√

1 + x+ y2)∂x + y√
1+x

∂y

U3 = x∂x + y∂y

Then, for i = 1, 2, 3, Ui is an analytic vector field on Pµi∪ {(0, 0)} that commutes with Xµi on Pµi .
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Proof. The commutators follow by applying Proposition 4.3 and to this end we need the involutions asso-
ciated to each potential function. As we already mentioned,

σ1(x) = − x

x+ 1
, σ2(x) = x+ 4− 4

√
x+ 1 and σ3(x) = −x

are the involutions for µ1, µ2 and µ3, respectively. By using these functions the result follows after some
easy computations which are omitted for the sake of shortness. (Of course, alternatively, the reader may
check that [Xµi , Ui] = 0.)

Fix some µ̂ ∈ {µ1, µ2, µ3} and take a germ of analytic curve ε 7−→ µ(ε) in the parameter space Λ such
that µ(0) = µ̂. Our first goal is to parametrize the set of periodic orbits of Xµ(ε) for ε ≈ 0. To this end we
consider the commutator U of Xµ̂ given by Lemma 4.4 and we proceed as follows. We choose an arbitrary
point x ∈Pµ̂ and we take the solution ψ(s; x) of U such that ψ(0; x) = x. Then, for some open interval I,
ψ( · ; x) : I −→ R2 is an analytic transverse section to Xµ̂ on Pµ̂. By continuity, this will be also the case
for Xµ(ε) with ε ≈ 0. Setting ξ(s) = ψ(s; x) for the sake of shortness, we define T (s; ε) to be the period of
the periodic orbit of Xµ(ε) passing through the point ξ(s). The function T (s; ε) is analytic for ε ≈ 0 and so
we can consider its Taylor’s series development at ε = 0,

T (s; ε) =

∞∑

i=0

Ti(s)ε
i.

Notice that T0 is constant because Xµ(ε) is isochronous for ε = 0. Then T ′(s; ε) =
∑∞
i=1 T

′
i (s)ε

i. We can
now give the fundamental result in order to prove Theorem C. In its statement we use the notation we have
just introduced.

Theorem 4.5. Take µ̂ ∈ {µ1, µ2, µ3} and set µ̂ = (q̂, p̂). Let U be the commutator of Xµ̂ given by Lemma 4.4
and take a transverse section ξ : I −→ R2 to Xµ̂ on Pµ̂ given by a solution of U . Then there exist analytic
functions A1 and A2 on I such that:

(a) (A1, A2) is an ECT-system on I.

(b) If ε 7−→ µ(ε) is a germ of analytic curve in Λ with µ(ε) = (q̂ + κ1ε
` + o(ε`), p̂ + κ2ε

` + o(ε`)) such
that κ1 6= 0 or κ2 6= 0, then the period function T (s; ε) corresponding to the perturbation Xµ(ε) verifies
T ′0 ≡ T ′1 ≡ · · · ≡ T ′`−1 ≡ 0 and T ′`(s) = κ1A1(s) + κ2A2(s) for all s ∈ I.

We remark that, for a given µ̂ ∈ {µ1, µ2, µ3}, the functions A1 and A2 depend only on the commutator U .
In particular, they do not depend on the germ of analytic curve chosen. In the previous statement we also
use the following definition (we refer the reader to [12] for details):

Definition 4.6. Let f0, f1, . . . fn−1 be analytic functions on an open interval I ⊂ R.

(a) (f0, f1, . . . fn−1) is a complete Chebyshev system (for short, a CT-system) on I if, for all k = 1, 2, . . . n,
any nontrivial linear combination

α0f0(x) + α1f1(x) + · · ·+ αk−1fk−1(x)

has at most k − 1 isolated zeros on I.

(b) (f0, f1, . . . fn−1) is a extended complete Chebyshev system (for short, a ECT-system) on I if, for all
k = 1, 2, . . . n, any nontrivial linear combination

α0f0(x) + α1f1(x) + · · ·+ αk−1fk−1(x)

has at most k − 1 isolated zeros on I counted with multiplicities.

(Let us mention that, in these abbreviations, “T” stands for Tchebycheff, which in some sources is the
transcription of the Russian name Chebyshev). �
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To obtain an expression of T ′` we shall apply a result of Grau and Villadelprat that appears in [11]. In
order to state it, some additional notation must be introduced. Since Xµ̂ and U are transverse on Pµ̂, there
exist two analytic functions α = α(x, y; ε) and β = β(x, y; ε) such that

Xµ(ε) = αXµ̂ + βU.

Note that

α =
<Xµ(ε), U

⊥>

<Xµ̂, U⊥>
and β =

<X⊥µ̂ , Xµ(ε)>

<X⊥µ̂ , U >
,

where < , > stands for the scalar product and X⊥ denotes the orthogonal vector field to X. Let us also
denote the k-jet of Xµ(ε) at ε = 0 by jk

(
Xµ(ε)

)
. With this notation, by applying [11, Theorem 3.2] we get:

Lemma 4.7. Let us assume that, for some k ∈ N, jk−1(Xµ(ε)) has an isochronous center at the origin for
all ε ≈ 0. Then T ′0 ≡ T ′1 ≡ · · · ≡ T ′k−1 ≡ 0 and

T ′k(s) = −
∫ T0

0

U(αk)|(x,y)=ϕ(t;s) dt for all s ∈ I,

where ϕ(t; s) is the solution of Xµ̂ with ϕ(0; s) = ξ(s) and αk is the kth term of α(x, y; ε) =
∑
i>0 αi(x, y)εi,

the Taylor development of α at ε = 0.

We point out that the assumption in [11, Theorem 3.2] is that there exists an analytic family of diffeo-
morphisms {Φε}, defined in a neighbourhood of (0, 0), such that Φε linearizes jk−1(Xµ(ε)) for each ε ≈ 0.

Here we replace it by the assumption that jk−1(Xµ(ε)) has an isochronous center at the origin for all ε ≈ 0,
which is more easy to verify. The next result shows that both conditions are equivalent:

Lemma 4.8. Let Λ ⊂ Rn be an open set and let {Xλ}λ∈Λ be an analytic family of planar analytic vector
fields with center at the origin. Then the center is isochronous for all λ ∈ Λ if, and only if, for each λ0 ∈ Λ
there exists a neighbourhood U of λ0 and an analytic family of analytic diffeomorphisms {Φλ}λ∈U , defined
in a neighbourhood of (0, 0), such that Φλ linearizes Xλ for each λ ∈ U .

Proof. First we show that the condition is necessary. Let ϕλ(t; p) be the solution of Xλ with ϕλ(0; p) = p.
In addition, for each λ ∈ Λ, let Pλ be the period annulus of the center at the origin of Xλ and let Tλ be
the period of its periodic orbits. Finally, let Aλ ∈M2×2 be the Jacobian matrix of Xλ at the origin. Define

Φλ(p) :=
1

Tλ

∫ Tλ

0

e−Aλsϕλ(s; p)ds.

One can easily verify that Φλ
(
ϕλ(t; p)

)
= eAλtΦλ(p). Moreover, by applying the variational equations, the

linear part of p 7−→ ϕλ(s; p) at p = (0, 0) is eAλsp. Consequently the Jacobian matrix of Φλ at p = (0, 0) is
the identity. Hence, for each λ ∈ Λ, the map Φλ linearizes Xλ in some neighbourhood Uλ of (0, 0). Let us fix
λ0 ∈ Λ and take a neighbourhood W of (0, 0) inside Pλ0

. Then there exists a neighbourhood V of λ0 such
that W ⊂ Pλ for all λ ∈ V. Now the result follows by applying the inverse function theorem to the map
Φ : W × V −→ R2 × V given by Φ(p, λ) := (Φλ(p), λ), which is analytic, thanks to the analytic dependence
of solutions on initial conditions and parameters, and satisfies that its Jacobian matrix at (p, λ) = (0, 0, λ0)
is the identity. This proves the result because the reverse implication is well-known (see [2] for instance).

Lemma 4.7 constitutes the first ingredient in the proof of Theorem 4.5. The second one is a criterion of
Grau, Mañosas and Villadelprat [10] that gives a sufficient condition for a collection of Abelian integrals to
be an ECT-system. In order to state it precisely some previous definitions must be introduced. Suppose
that H(x, y) = A(x) + B(x)y2m is an analytic function in some open subset of the plane that has a local
minimum at the origin. Then there exists a punctured neighbourhood P of the origin foliated by ovals
γh ⊂ {H(x, y) = h}. We set H(0, 0) = 0 and then the set of ovals γh inside P is parameterized by the
energy levels h ∈ (0, h0) for some positive h0. The projection of P on the x-axis is an interval (x`, xr) with
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x` < 0 < xr. Under these assumptions A has a zero of even multiplicity at x = 0, and it is easy to verify
that there exist an analytic involution σ such that

A(x) = A
(
σ(x)

)
for all x ∈ (x`, xr).

Given a function κ defined on (x`, xr) \ {0}, we define its σ-balance as

Bσ

(
κ
)
(x) = κ(x)− κ

(
σ(x)

)
.

Following this notation we can now state the criterion [10, Theorem B] as follows.

Theorem 4.9. Let f0, f1, . . . , fn−1 be analytic functions on (x`, xr), and consider the Abelian integrals

Ii(h) =

∫

γh

fi(x)y2s−1dx, i = 0, 1, . . . , n− 1.

Let σ be the involution associated to A and define `i := Bσ

(
fi

A′B
2s−1
2m

)
. If

(
`0, `1, . . . , `n−1

)
is a CT-system

on (0, xr) and s > m(n− 2), then (I0, I1, . . . , In−1) is an ECT-system on (0, h0).

The next result can also be found in [10]. It is very useful in order to apply the previous criterion to a
collection of Abelian integrals not verifying the condition s > m(n− 2).

Lemma 4.10. Let γh be an oval inside the level curve {A(x) + B(x)y2 = h}, and we consider a function
F such that F/A′ is analytic at x = 0. Then, for any k ∈ N,

∫

γh

F (x)yk−2dx =

∫

γh

G(x)ykdx,

where G(x) = 2
k

(
BF
A′
)′

(x)−
(
B′F
A′

)
(x).

Proof of Theorem 4.5. Fix some µ̂ ∈ {µ1, µ2, µ3} and, setting µ̂ = (q̂, p̂), take a germ of analytic curve

µ(ε) =
(
q̂ + κ1ε

` + o(ε`), p̂+ κ2ε
` + o(ε`)

)
with κ1 6= 0 or κ2 6= 0.

We consider the one-parameter perturbation Xµ(ε) and an easy computation shows that

Xµ(ε) = Xµ̂ + Zε` + o(ε`) with Z :=
(
κ2(x+ 1)p̂ − κ1(x+ 1)q̂

)
log(x+ 1)∂y.

Hence j`−1
(
Xµ(ε)

)
is isochronous for all ε ≈ 0 and, by applying Lemma 4.7, T ′0 ≡ T ′1 ≡ · · · ≡ T ′`−1 ≡ 0 and

T ′`(s) = −
∫ T0

0

U(α`)|(x,y)=ϕ(t;s) dt for all s ∈ I,

where ϕ(t; s) is the solution of Xµ̂ with ϕ(0; s) = ξ(s). Note also that, due to α =
<Xµ(ε),U

⊥>
<Xµ̂,U⊥>

=
∑
i>0 αiε

i,

we have α` = <Z,U⊥>
<Xµ̂,U⊥>

.

Recall that H(x, y) = 1
2y

2 + Vµ̂(x) is the Hamiltonian associated to Xµ̂. Hence, by construction, the
solution ϕ(t; s) is inside the energy level H(x, y) = H(ξ(s)) =:η(s). Since it is clear that η : I −→ (0, h0) is
a diffeomorphism, to prove the result we can consider J(h) := T ′`(η

−1(h)) for h ∈ (0, h0). More precisely,
the result will be proved once we show that there exist analytic functions J1 and J2 with (J1, J2) being an
ECT-system on (0, h0) and such that J(h) = κ1J1(h) + κ2J2(h). With this aim in view notice first that

J(h) = −
∫

γh

U(α`)(x, y)

y
dx,

where as usual γh denotes the oval inside the energy level H(x, y) = h for h ∈ (0, h0).
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We must at this point particularize the proof for each one of the three isochronous centers. We will show
in detail the computations for µ̂ = (−3, 1). In this case α`(x, y) = (−κ1 + κ2(x+ 1)4)f(x, y) with

f(x, y) =
((x+ 1)2y2 + x(x+ 2)(x2 + 2x+ 2)) log(x+ 1)

((x+ 1)2y2 + (x2 + 2x+ 2)2(x+ 1)2)(y2 + x2(x+ 2)2)
.

We then compute U(α`) = ∇α` · U , which yields to

J(h) =
κ1

16h(h+ 2)

∫

γh

g3(x)

(x+ 1)2
y3 +

g4(x)

(1 + x)4
y +

g5(x)

(x+ 1)6y
dx

− κ2

16h(h+ 2)

∫

γh

(1 + x)2y3 + g1(x)y +
g2(x)

(x+ 1)2y
dx,

where

g1(x) = 2(4x+ 6x2 + 4x3 + x4) + 4 log(x+ 1),

g2(x) = (4x+ 6x2 + 4x3 + x4)(4x+ 6x2 + 4x3 + x4 − 4 log(x+ 1)),

g3(x) = 4 log(x+ 1)− 1,

g4(x) = 4(2x4 + 8x3 + 12x2 + 8x− 1) log(x+ 1)− (4x+ 6x2 + 4x3 + x4),

g5(x) = 4(x+ 1)4(4x+ 6x2 + 4x3 + x4) log(x+ 1)− (4x+ 6x2 + 4x3 + x4)2.

Here we used that, due to Vµ1(x) = x2(x+2)2

2(x+1)2
, we have y2 + x2(x+2)2

(x+1)2
= 2h for all (x, y) ∈ γh. Next we apply

twice Lemma 4.10 to get

J(h) =
−1

12h(h+ 2)

(
κ1

∫

γh

7y3dx

3(x+ 1)2
+ κ2

∫

γh

8(x+ 1)2y3dx

)
.

The projection of the period annulus Pµ1 on the x-axis is (−1,+∞) and, according to Lemma 4.4, the
involution associated to Vµ1

is σ(x) = − x
x+1 . Next, setting f0(x) = 1

(x+1)2 and f1(x) = (x + 1)2, we will

apply Theorem 4.9 with A = Vµ1
, B = 1

2 , m = 1 and s = n = 2. Following its notation, we obtain

`0(x) =
8(x+ 1)

x(x+ 2)
and `1(x) =

8((x+ 1)4 − 2x− x2)

x(x+ 1)(x+ 2)
.

Note that `0(x) 6= 0 for all x ∈ (0,+∞). One can also verify that the wronskian of `0 and `1 does not vanish
on (0,+∞) neither. Then by using a well-known result, see [10, Lemma 2.3] for instance, we can assert that
(`0, `1) is an ECT-system on (0,+∞). Therefore, setting

J1(h) =
−7

36h(h+ 2)

∫

γh

y3dx

(x+ 1)2
and J2(h) =

−2

3h(h+ 2)

∫

γh

(x+ 1)2y3dx,

by applying Theorem 4.9 we can conclude that (J1, J2) is an ECT-system on (0, h0). Finally, on account of
T ′`(η

−1(h)) = J(h) = κ1J1(h) + κ2J2(h), the result follows for µ1 taking Ai(s) = Ji(η(s)) for i = 1, 2.

Since the proof for µ2 = (−1/2, 0) and µ3 = (0, 1) follows exactly the same way, we omit it here for the
sake of brevity.

Proof of Theorem C. The fact that the center of the differential system in (1) is isochronous if, and only
if, µ ∈ {µ1, µ2, µ3} follows from Theorem 3.3. Fix some µ̂ ∈ {µ1, µ2, µ3} and take a germ of analytic curve
ε 7−→ µ(ε) in Λ with µ(0) = µ̂. Let us set µ̂ = (q̂, p̂) and note that there exists ` ∈ N such that

µ(ε) =
(
q̂ + κ1ε

` + o(ε`), p̂+ κ2ε
` + o(ε`)

)
with κ1 6= 0 or κ2 6= 0.

Then, by applying Theorem 4.5, the period function T (s; ε) corresponding to the perturbation Xµ(ε) verifies
T ′0 ≡ T ′1 ≡ · · · ≡ T ′`−1 ≡ 0 and T ′`(s) = κ1A1(s)+κ2A2(s) for all s ∈ I. Moreover (A1, A2) is an ECT-system
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on I. Accordingly, by applying the Implicit Function Theorem, we can assert that, for each ε ≈ 0, T ′(s; ε)
has at most one zero on I counted with multiplicity. This proves that Crit ((Pµ̂, Xµ̂), Xµ(ε)) 6 1.

Finally, in order to show that there exists a perturbation of Xµ̂ for which this upper bound is achieved,
it suffices to consider

µ(ε) =
(
q̂ + κ1ε+ o(ε), p̂+ κ2ε+ o(ε)

)

taking κ1 and κ2 such that κ1A1(ŝ) + κ2A2(ŝ) = 0 for some ŝ ∈ I, i.e., −κ1

κ2
∈
(
A2

A1

)
(I). Here we use of

course that A1 and A2 do not depend on the particular curve ε 7−→ µ(ε) chosen. This proves the result.
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