123 research outputs found

    Theory of the Double Layer in Water-in-Salt Electrolytes.

    Get PDF
    One challenge in developing the next generation of lithium-ion batteries is the replacement of organic electrolytes, which are flammable and most often contain toxic and thermally unstable lithium salts, with safer, environmentally friendly alternatives. Recently developed water-in-salt electrolytes (WiSEs), which are nonflammable, nontoxic, and also have enhanced electrochemical stability, are promising alternatives. In this work, we develop a simple modified Poisson-Fermi theory for WiSEs, which demonstrates the fine interplay between electrosorption, solvation, and ion correlations. The phenomenological parameters are extracted from molecular dynamics simulations, also performed here. The theory reproduces the WiSEs' electrical double-layer structure with remarkable accuracy

    Gelation, clustering, and crowding in the electrical double layer of ionic liquids.

    Get PDF
    Understanding the bulk and interfacial properties of super-concentrated electrolytes, such as ionic liquids (ILs), has attracted significant attention lately for their promising applications in supercapacitors and batteries. Recently, McEldrew et al. [J. Phys. Chem. B 125, 2677 (2021)] developed a theory for reversible ion associations in bulk ILs, which accounted for the formation of all possible (Cayley tree) clusters and a percolating ionic network (gel). Here, we adopt and develop this approach to understand the associations of ILs in the electrical double layer at electrified interfaces. With increasing charge of the electrode, the theory predicts a transition from a regime dominated by a gelled or clustered state to a crowding regime dominated by free ions. This transition from gelation to crowding is conceptually similar to the overscreening to crowding transition

    Polar liquids at charged interfaces: A dipolar shell theory

    Get PDF
    The structure of polar liquids and electrolytic solutions, such as water and aqueous electrolytes, at interfaces underlies numerous phenomena in physics, chemistry, biology, and engineering. In this work, we develop a continuum theory that captures the essential features of dielectric screening by polar liquids at charged interfaces, including decaying spatial oscillations in charge and mass, starting from the molecular properties of the solvent. The theory predicts an anisotropic dielectric tensor of interfacial polar liquids previously studied in molecular dynamics simulations. We explore the effect of the interfacial polar liquid properties on the capacitance of the electrode/electrolyte interface and on hydration forces between two plane-parallel polarized surfaces. In the linear response approximation, we obtain simple formulas for the characteristic decay lengths of molecular and ionic profiles at the interface

    Application of finite Gaussian process distribution of relaxation times on Sofc electrodes

    Get PDF
    Electrochemical impedance spectroscopy (EIS) is a powerful tool in characterisation of processes in electrochemical systems, allowing us to elucidate the resistance and characteristic frequency of physical properties such as reaction and transport rates. The essence of EIS is the relationship between current and potential at a given frequency. However, it is often the case that we do not understand the electrochemical system well enough to fit a meaningful physical model to EIS data. The distribution of relaxation times (DRT) calculation assumes an infinite series of relaxation processes distributed over a characteristic timescale. The DRT calculation may identify the number of processes occurring, as well as their respective resistivity and characteristic timescale, and may resolve processes which have relatively similar timescales. Using a nonparametric tool known as Gaussian process (GP) regression, we showcase a method of finding a unique solution to the ill-posed DRT problem by optimising kernel hyperparameters as opposed to ad-hoc regularisation. In this work, we use finite GP regression under inequality constraints (fGP) to analysed EIS data generated by a (Ni/CGO|CGO|YSZ|Reference Cathode) solid-oxide fuel cell in a gas mixture of 0.5 bar H2/0.5 bar H2O and at a temperature of 600 ◦C. By varying the current density, we can characterise the current-voltage relationship of the electrode and shed light on the reaction mechanism governing charge transfer at the solid-gas interface. Our findings also show that even at relatively high current densities (±600 mA cm− 2) the electrode process is limited by charge transfer

    Interfacial layering in the electric double layer of ionic liquids

    Get PDF
    Ions in ionic liquids and concentrated electrolytes reside in a crowded, strongly interacting environment, leading to the formation of discrete layers of charges at interfaces and spin-glass structure in the bulk. Here, we propose a simple theory that captures the coupling between steric and electrostatic forces in ionic liquids. The theory predicts the formation of discrete layers of charge at charged interfaces. Further from the interface, or at low polarization of the electrode, the model outputs slowly decaying oscillations in the charge density with a wavelength of a single ion diameter, as shown by analysis of the gradient expansion. The gradient expansion suggests a new structure for partial differential equations describing the electrostatic potential at charged interfaces. We find quantitative agreement between the theory and molecular simulations in the differential capacitance and concentration profiles

    Structural forces in ionic liquids: the role of ionic size asymmetry

    Get PDF
    Ionic liquids (ILs) are charged fluids composed of anions and cations of different size and shape. The ordering of charge and density in ILs confined between charged interfaces underlies numerous applications of IL electrolytes. Here, we analyze the screening behavior and the resulting structural forces of a representative IL confined between two charge-varied plates. Using both molecular dynamics simulations and a continuum theory, we contrast the screening features of a more-realistic asymmetric system and a less-realistic symmetric one. The ionic size asymmetry plays a nontrivial role in charge screening, affecting both the ionic density profiles and the disjoining pressure distance dependence. Ionic systems with size asymmetry are stronger coupled systems, and this manifests itself both in their response to the electrode polarization and spontaneous structure formation at the interface. Analytical expressions for decay lengths of the disjoining pressure are obtained in agreement with the pressure profiles computed from molecular dynamics simulations

    Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments

    Get PDF
    International audienceReplacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the ‘junctions’ between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains

    Experimental Verification of Overlimiting Current by Surface Conduction and Electro-Osmotic Flow in Microchannels

    Get PDF
    Direct evidence is provided for the transition from surface conduction (SC) to electro-osmotic flow (EOF) above a critical channel depth (d) of a nanofluidic device. The dependence of the overlimiting conductance (OLC) on d is consistent with theoretical predictions, scaling as d(-1) for SC and d(4/5) for EOF with a minimum around d = 8 mu m. The propagation of transient deionization shocks is also visualized, revealing complex patterns of EOF vortices and unstable convection with increasing d. This unified picture of surface-driven OLC can guide further advances in electrokinetic theory, as well as engineering applications of ion concentration polarization in microfluidics and porous media.open114040sciescopu

    Nonlinear electrophoresis of dielectric and metal spheres in a nematic liquid crystal

    Full text link
    Electrophoresis is a motion of charged dispersed particles relative to a fluid in a uniform electric field. The effect is widely used to separate macromolecules, to assemble colloidal structures, to transport particles in nano- and micro-fluidic devices and displays. Typically, the fluid is isotropic (for example, water) and the electrophoretic velocity is linearly proportional to the electric field. In linear electrophoresis, only a direct current (DC) field can drive the particles. An alternate current (AC) field is more desirable because it allows one to overcome problems such as electrolysis and absence of steady flows. Here we show that when the electrophoresis is performed in a nematic fluid, the effect becomes strongly non-linear with a velocity component that is quadratic in the applied voltage and has a direction that generally differs from the direction of linear velocity. The new phenomenon is caused by distortions of the LC orientation around the particle that break the fore-aft (or left-right) symmetry. The effect allows one to transport both charged and neutral particles, even when the particles themselves are perfectly symmetric (spherical), thus enabling new approaches in display technologies, colloidal assembly, separation, microfluidic and micromotor applications.Comment: 15 pages, 4 figure
    corecore