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Ions in ionic liquids and concentrated electrolytes reside in a crowded, strongly-interacting en-
vironment, leading to the formation of discrete layers of charges at interfaces. Here, we propose
a continuum theory that captures the transition from overscreening– alternating layers of excess
charge at low surface potential, to overcrowding– the formation of dense layers of charge of the
same sign at high surface potential. The model outputs slowly-decaying oscillations in the charge
density with a wavelength of single ion diameters, as shown by analysis of the gradient expansion.
The gradient expansion suggests a new structure for partial differential equations describing the
electrostatic potential at charged interfaces. We find quantitative agreement between the presented
theory and performed Molecular Dynamics simulations in the differential capacitance and concen-
tration profiles.

Introduction- The spatial organization of ions in con-
centrated electrolytes lead to strong density and charge
oscillations in the electrical double layer (EDL) at
charged interfaces [1–3]. When the concentration is
beyond the dilute limit of the established Poisson-
Boltzmann (PB) theory, one must account for correlation
and packing effects, particularly as the Debye length ap-
proaches the size of a single ion [4]. Methods to correct
the PB equations include the hypernetted-chain equa-
tion [5–10], mean-spherical approximation [11, 12], den-
sity functional theory [13–21], and dressed-ion theory[22,
23]. While many of these approaches can accurately pre-
dict EDL profiles, they often lack the simplicity and phys-
ical transparency of the PB theory which they seek to
correct [4].

More recently, with the rediscovery of room tempera-
ture ionic liquids (RTILs) [24, 25] and their applications
to energy storage devices [1, 26], the task of understand-
ing the interfacial structure in concentrated electrolytes
has surged [27]. Describing the EDL of RTILs is particu-
larly difficult because of the competition between strong
steric and electrostatic forces [1], as illustrated in Fig. 1.
In fact, the coupling of density and charge has been de-
scribed as the ground state for a spin-glass Hamiltonian
for ionic nearest neighbors [28], which is difficult to de-
scribe with continuum equations. The interplay between
ion position and charge order gives rise to the well known
crossover from the overscreening regime (where decay-
ing oscillations of charge density occur) to the crowding
regime (where dense layers of countercharge accumulate
at the interface before an overscreening tail) [29–32].

One of the most popular descriptions of the overscreen-
ing versus crowding problem [29, 30] in RTILs is the
Bazant-Storey-Kornyshev (BSK) theory [31]. There, a

Landua-Ginzburg like free energy functional was pro-
posed, which contained a higher order gradient term in
the electrostatic potential, in addition to the commonly
used lattice-gas excluded-volume excess chemical poten-
tial which describes crowding in the spirit of Refs. 33
and 34. That additional electrostatic term permitted
overscreening, and its transition to crowding at large po-
tentials [31]. However, in the BSK theory, the oscilla-
tion period is not the size of the ion, in disagreement
with interfacial layering profiles in Molecular Dynamics

FIG. 1. (a) Illustration of a concentrated, crowded electrolyte
forming structured double layers at high surface charge den-
sity. The cations are red, the anions are blue, and the surface
atoms are shown in gray, with negative charge on the left
surface and positive charge on the right surface. (b) Corre-
sponding concentration profile for a representative room tem-
perature ionic liquid of equal-sized hard spheres (c0 = 5 M,
d = 0.5 nm, εr = 10, qs = 120 µC/cm2, T = 300 K).
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FIG. 2. Layering of ions in a concentrated electrolyte or ionic
liquid. (a) The overscreening ‘signature:’ the charge density
of ions near a positively charged electrode scaled to the sur-
face charge density on the electrode. The inset shows the
concentration profile for each ion at qs = 10 µC/cm2, with
oscillations in both the sum of concentrations and in the dif-
ference in concentrations. (b) The cumulative charge density
as a function of the distance from the interface, with inset
showing the extent of screening in the first layer of charge,
f1. Overscreening occurs when the net charge in the first
layer is larger than the charge on the electrode.

(MD) simulations [35]. More recent work has suggested
that the overscreening structure is a similar concept to
the finite-size [36] and orientation of ionic aggregates [37]
near charged interfaces.

In this letter, we propose a modification to the free
energy functional which permits layering and extended
overscreening. The modification to the electrostatic free
energy occurs through swapping out the charge density
for a weighted charge density over the ion size, and we
use a similar approach for the excess free energy for the
excluded volume. The modifications, without any fitting
parameters, match our simulation results of a representa-
tive electrolyte of charged Lennard-Jones spheres. While
we explore the equilibrium properties at interfaces, the
formulation here could be extended to RTILs out of equi-
librium, phase field crystal models, or systems including

a structured solvent.
Theory- We modify the electrostatic and hard sphere

packing free energies by representing them in terms of
weighted densities of local concentrations, similar to
weighted-density approximations including fundamental
measure theory [38–40]. We rationalize these choices by
treating the ions as hard, conducting, charged spheres of
finite size, with point potential:

Gi(r) =

{
zie
4πεr r > R

φ0 r < R
(1)

where φ0 is a constant within a given ion, ε is the per-
mittivity surrounding the ion (assumed constant in this
work[41] ), zie is the charge of the ion, R is the radius of
an ion, and r is the distance from the center of an ion.
The linear integro-differential equation corresponding to
this Green’s function is:

ε∇2φ = −ρ̄e(r) = −
∫
dr′ρe(r)ws(r− r′)

ws(r− r′) =
1

4πR2
δ (R− | r− r′ |)

(2)

which is the key modified Poisson equation in our work.
Here φ is the electrostatic potential, ρe =

∑
i zieρi is the

charge density of ionic centers, ρ̄e is the weighted charge
density (charge density calculated for the smeared charge
of an ion over its surface), and ws is the weighting func-
tion. Integrating contributions of the smeared charges
results in the “actual” charge density which resides in
the Poisson equation. While our weight function for the
charge density resembles the choice of charge form factor
in Ref. 36 for ionic screening in the bulk, we construct a
mean-field equation that gives the ionic density at a flat
interface at high charge density.

From the above modified Poisson equation, the elec-
trostatic free energy density becomes:

Fel[ρ̄e, φ] =

∫
dr
{
− ε

2
(∇φ)2 + ρ̄eφ

}
. (3)

The chemical part of the free energy con-
tains an ideal contribution: F id[{ρi(r)}] =∑
i kBT

∫
dr ρi(r)

[
ln(Λ3ρi(r)) − 1

]
, where kBT is

thermal energy, Λ is the thermal de Broglie wavelength
and ρi is the concentration of the centers of species
i. There is also an excess contribution to account for
crowding of the finite-sized ions. The Carnahan-Starling
equation of state accurately describes the thermody-
namic properties of a hard sphere liquid. Here, we adapt
it, and we furthermore assume that the local excess free
energy depends on volumetrically weighted densities,
similar to n3 in fundamental measure theory[38, 39]:

Fex[ρ̄i(r)] =
kBT

v

∫
dr

[
1

1− p̄
− 3p̄+

1

(1− p̄)2

]
(4)
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where p̄ =
∑
i vρ̄i is the weighted volumetric filling frac-

tion and v = 4πR3/3 the volume of an ion. The weighted
densities are defined by:

ρ̄i(r) =

∫
dr′ρi(r)wv(r− r′)

wv(r− r′) =
1

v
Θ (R− | r− r′ |)

(5)

where the scalar valued weighting function has units of
inverse volume. Therefore, the densities with which the
mean field electrostatic interaction or hard sphere inter-
action occurs are computed with a quantized volume of
one ionic size. For the purposes of this study, the electro-
static weighting function will be homogenized on a sur-
face of an ionic sphere, whereas the volumetric packing
fraction will be homogenized over a volume of an ionic
sphere.

Minimizing the free energy functional, we arrive at a
modified PB equation, Eq. (2), where the distribution of
ion (center) densities are determined by

ρi = ρi,0 exp(−ziβeφ̄− βµ̄ex
i + βµex

i,bulk) (6)

with β as the inverse thermal energy, φ̄ = φ ∗ ws and
µ̄ex
i = µex

i ∗wv (star denoting the convolution), and excess
chemical potential defined as βµex

i = (8p̄−9p̄2+3p̄3)/(1−
p̄)3 [42].

Results and Discussion- We solve the above coupled
integro-differential equations 2 and 6 at a flat electrode,
with surface charge density, qs, at x = 0. In this case, the
standard boundary condition for the potential is applied
n̂ · ε∇φ|s = −qs. The local ionic densities (of centers) ρi
and charge density (of ionic centers) ρe are assumed to
be zero within one radius from the surface, from x = 0
to x = R, due to hard sphere exclusion. We solve for
the area averaged density, and we therefore reduce all
equations to be dependent on one coordinate, x. Nu-
merically, we discretize the equations using a simple fi-
nite difference approach, similar to how the standard PB
equations could be solved. More details on the numeri-
cal approach are provided in the supporting information
(SI).

For further intuition, we first examine the results fol-
lowing from a simple gradient expansion of the weighting
functions that turns them into operators: wi = 1+`i

2∇2,
where `i is given by `s = d/

√
24 for ws and `v = d/

√
40

for wv. The corresponding free energy density is given
by:

Fel[ρ̄e, φ] =

∫
dr
{
− ε

2
(∇φ)2 +ρeφ− `s2∇ρe ·∇φ

}
. (7)

The leading order term in the expansion corresponds to
a dipole density interacting with an electric field, inter-
pretable as ionic pairs of effective volumetric dipole mo-
ment `s

2∇ρe [37]. Note that since the order of the differ-
ential equation increases, we need an additional bound-
ary condition. We assume this to be n · ∇ρe|s = 0 in

order to satisfy electroneutrality in the differential equa-
tion, namely that:

∫
drρe(r) = −

∫
drsqs(rs).

The above gradient expansion does not reproduce the
profile at the first layer. In particular, it is difficult to
represent the discontinuous contact point at x = R, and
so the solutions are shifted by one ionic radius. Even so,
the gradient expansion is useful for deriving analytical
approximations for the theory, and may be easier to ap-
ply to problems in diverse applications such as electroki-
netics [43], colloidal interactions [44], or electrochemi-
cal storage [45, 46] than the full integro-differential the-
ory [47]. As an example, we will first analyze the gradient
expansion of the continuum theory in terms of its limiting
linear response behavior, which asymptotically matches
the behavior of the full integral equation far from the
interface. Further comparisons are included in the SI.

In linear response, the characteristic equation for the
potential becomes:

λ2D∇2φ− (1 + `2s∇2)2φ = 0. (8)

While this equation is a fourth order equation, similar
to the linearized BSK equation, it has a very different
decaying modes due to an additional second order term.
The eigenvalues of the above differential equation has the
form:

κsλD =
1±

√
1− 4(`s/λD)2

2(`s/λD)2
. (9)

Note that the form of Eq. (8) bears some resemblance
to the Swift-Hohenberg equation [48], commonly used to
describe pattern formation and other phase-field crystal
models [49]; here electrostatics and finite size drive the
pattern formation. When `s/λD > 1/2, oscillations ap-
pear in the solution, and in the limit of `s/λD � 1/2, the
screening length takes the form: κsλD = λ2D/`

2
s±iλD/`s.

At high concentration, the ions will therefore form charge
density layers on the scale of the ionic size, with period
of 1.28 d, similar to the result from simulations. Ad-
ditionally, in strongly correlated regimes, the real part
of the screening length will scale as: ln [Re (λs/λD)] =
2 ln (d/λD) + const, increasing with concentration. This
result is qualitatively in agreement with surface force ex-
periments [50, 51], but they find a scaling factor 3 rather
than 2. They also measure monotonic decay, and not de-
caying oscillations in the overscreening tail as predicted
by the theory. Note that the mass density oscillations
also have a characteristic decay length, but it is decou-
pled from the electrostatic potential at linear response
for ions of the same size, as discussed in the SI. The dis-
crepancy in exponents may be due to the symmetric size
of ions in the analysis here, which limits the coupling
between mass and electrostatics.

Next, we compute the ion concentration and density
profiles as a function of charge density for some model
parameters (c0 = 5 M, d = 0.5 nm, εr = 10, T = 300 K),
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FIG. 3. Differential capacitance of the EDL as a function
of the applied voltage, for the weighted density approxima-
tion (WDA) in Eq. (2), simulations, and the mean-field (MF)
formula [33], given in the SI. Inset: The charge density in
the double layer as a function of the applied voltage. The
parameters are identical to Fig. 2.

shown in Fig. 2. Note the parameters shown here are
meant to be representative of RTILs, but the simplifying
assumptions of similarly-sized cations and anions prevent
a direct comparison with experimental results for asym-
metric ionic liquids [52]. We also present the cumulative
screening charge, defined as f(x) = −

∫ x
0
ρe(x

′)dx′/qs.
At low surface charge density, the first layer of charge
has about 60% more counter charge than the surface
charge on the surface. Subsequent layers of alternating
charge are formed. Additionally, at low surface charge
density, the ion concentrations themselves are strongly
affected by overall structuring of the fluid (c+ + c−) due
to packing at the interface. At higher charge density,
the inhibitive force of packing at the interface decreases
the extent of overscreening in the first layer, f1. Even-
tually, as the charge density exceeds the total amount
of charge that can be stored in a single layer of ions,
a secondary layer of ions is formed. When this occurs,
the extent of overscreening becomes determined by the
renormalized charge on the interface. The chosen simula-
tion parameters are also in the strongly oscillating regime
`s/λD ≈ 2.1, meaning that the far range screening tail
has approximate wavelength of one ionic diameter and
long decay length.

It is instructive to compare the predictions of the the-
ory to MD simulations of a Lennard-Jones electrolyte
with the same parameters. The differential capacitance,
C =| dqs/dφ0 | is evaluated in Fig. 3 as a function
of the potential at x = 0, φ0. Compared to simula-
tions, the weighted density theory captures the low ca-
pacitance at zero charge and the decay of capacitance
at large voltages. The theory presented here agrees
much better with simulations compared to the mean-
field formula [33, 53]; the improvements in the crowding

regime, at large voltages, are due to use of the weighted
Carnahan-Starling approximation rather than the simple
mean-field formula, both obeying, however, the V −1/2

limiting law [33, 47]. In Fig. 4, the layering struc-
ture is compared between theory and simulation for low
and high charge densities. The theory is able to quali-
tatively match the structuring in the simulations, with
charge density oscillations and eventually layers of the
same charge at high charge density. Even so, the wave-
length in the charge density oscillations are off by about
a factor of 1.3. Such a discrepancy could be captured by
modifying the weighting function to extend beyond the
size of the ionic radius, but modifications to ws will be
explored elsewhere.

The developed continuum theory captures the key
points in the interplay between overscreening and crowd-
ing in EDL of ionic liquids, including: 1) Decaying charge
density profiles near the electrode and the overscreening
effect as a consequence of molecular layering, 2) The on-
set of crowding through the shift of the overscreening to
a third, and then subsequently further layers, and 3) The
emergence of the long range screening tail in ultraconcen-
trated ionic systems [54].

Through the introduction of weighting functions, those
effects arise naturally in the theory without any fitting
parameters. In this letter, we have used the simplest ap-
proximations for spherically symmetric form factors, and
in the illustrative case studies considered cations and an-
ions having the same size. But the theory can be easily
extended for the description of the anisotropic intra-ion
charge distributions and ions of different size. Further-
more, the theory could be applied to ionic liquids out of
equilibrium in which ionic transport, fluid flow, or even
crystalization processes occur.

The theory is simple and transparent, and as such it
serves its purpose, qualitatively describing the balance
between the key effects in these complex ionic systems.
Its credibility is tested by specially performed MD simu-
lations.
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FIG. 4. Comparison of theory (a-b) and simulation (c-d) concentration profiles for two different charge densities: qs =
10 µC/cm2 and qs = 120 µC/cm2. The electrolyte has the same parameters as in Figs. 2 and 3.

[1] M. V. Fedorov and A. A. Kornyshev, Chem. Rev. 114,
2978 (2014).

[2] M. Z. Bazant, M. S. Kilic, B. D. Storey, and A. Ajdari,
Adv. Colloid Interface Sci 152, 48 (2009).

[3] J. G. Kirkwood, Chem. Rev. 19, 275 (1936).
[4] L. M. Varela, M. Garcia, and V. Mosquera, Phys. Rep.

382, 1 (2003).
[5] G. Patey, J. Chem. Phys. 72, 5763 (1980).
[6] M. Lozada-Cassou, R. Saavedra-Barrera, and D. Hen-

derson, J. Chem. Phys. 77, 5150 (1982).
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