5,371 research outputs found

    The Extremes of Thermonuclear Supernovae

    Full text link
    The majority of thermonuclear explosions in the Universe seem to proceed in a rather standardised way, as explosions of carbon-oxygen (CO) white dwarfs in binary systems, leading to 'normal' Type Ia supernovae (SNe Ia). However, over the years a number of objects have been found which deviate from normal SNe Ia in their observational properties, and which require different and not seldom more extreme progenitor systems. While the 'traditional' classes of peculiar SNe Ia - luminous '91T-like' and faint '91bg-like' objects - have been known since the early 1990s, other classes of even more unusual transients have only been established 20 years later, fostered by the advent of new wide-field SN surveys such as the Palomar Transient Factory. These include the faint but slowly declining '02es-like' SNe, 'Ca-rich' transients residing in the luminosity gap between classical novae and supernovae, extremely short-lived, fast-declining transients, and the very luminous so-called 'super-Chandrasekhar' SNe Ia. Not all of them are necessarily thermonuclear explosions, but there are good arguments in favour of a thermonuclear origin for most of them. The aim of this chapter is to provide an overview of the zoo of potentially thermonuclear transients, reviewing their observational characteristics and discussing possible explosion scenarios.Comment: Author version of a chapter for the 'Handbook of Supernovae', edited by A. Alsabti and P. Murdin, Springer. 50 pages, 7 figure

    Type Iax Supernovae

    Full text link
    Type Iax supernovae (SN Iax), also called SN 2002cx-like supernovae, are the largest class of peculiar white dwarf (thermonuclear) supernovae, with over fifty members known. SN Iax have lower ejecta velocity and lower luminosities, and these parameters span a much wider range, than normal type Ia supernovae (SN Ia). SN Iax are spectroscopically similar to some SN Ia near maximum light, but are unique among all supernovae in their late-time spectra, which never become fully nebular. SN Iax overwhelmingly occur in late-type host galaxies, implying a relatively young population. The SN Iax 2012Z is the only white dwarf supernova for which a pre-explosion progenitor system has been detected. A variety of models have been proposed, but one leading scenario has emerged: a type Iax supernova may be a pure-deflagration explosion of a carbon-oxygen (or hybrid carbon-oxygen-neon) white dwarf, triggered by helium accretion to the Chandrasekhar mass, that does not necessarily fully disrupt the star.Comment: Author version of a chapter in the 'Handbook of Supernovae', edited by A. Alsabti and P. Murdin, Springer. 31 pages, 6 figure

    Convolution-type derivatives, hitting-times of subordinators and time-changed C0C_0-semigroups

    Full text link
    In this paper we will take under consideration subordinators and their inverse processes (hitting-times). We will present in general the governing equations of such processes by means of convolution-type integro-differential operators similar to the fractional derivatives. Furthermore we will discuss the concept of time-changed C0C_0-semigroup in case the time-change is performed by means of the hitting-time of a subordinator. We will show that such time-change give rise to bounded linear operators not preserving the semigroup property and we will present their governing equations by using again integro-differential operators. Such operators are non-local and therefore we will investigate the presence of long-range dependence.Comment: Final version, Potential analysis, 201

    A systematic review and meta-analysis of studies comparing burden from lung cancer and chronic obstructive pulmonary disease.

    Get PDF
    BACKGROUND:Chronic obstructive pulmonary disease and lung cancer are both life-limiting diseases that confer burden in the form of symptoms and affect functioning and quality of life. Comparing burden between these diseases is of interest to determine whether people with chronic obstructive pulmonary disease require improved access to Specialist Palliative Care. Access should be based on needs rather than diagnosis or prognosis but is limited for people with chronic obstructive pulmonary disease compared to lung cancer. AIM:The aim of this study was to synthesise research comparing burden from chronic obstructive pulmonary disease and lung cancer to estimate relative need for Specialist Palliative Care. DESIGN:A systematic review was conducted of observational quantitative studies published in English peer-reviewed journals comparing burden from chronic obstructive pulmonary disease and lung cancer (PROSPERO CRD42018108819). No limits were placed on disease stage. Meta-analyses were performed where studies used the same measure; otherwise, synthesis used a narrative approach. Risk of bias was assessed using the Agency for Healthcare Research and Quality tool. DATA SOURCES:Electronic databases were searched in September 2019. RESULTS:Of 790 articles returned, 13 were included, reporting 11 studies. Risk of bias was generally moderate. Except for pain, burden tended to be at least as substantial from chronic obstructive pulmonary disease as from lung cancer, with breathlessness and impacts on functioning being significantly worse. Longitudinal studies suggest that people with chronic obstructive pulmonary disease live with burden for longer. CONCLUSION:Efforts should be made to ensure that access to Specialist Palliative Care is commensurate with chronic obstructive pulmonary disease's substantial and long-lasting burden. Future research should clarify whether managing burden in chronic obstructive pulmonary disease and lung cancer requires different approaches

    A low energy core-collapse supernova without a hydrogen envelope

    Get PDF
    The final fate of massive stars depends on many factors, including mass, rotation rate, magnetic fields and metallicity. Theory suggests that some massive stars (initially greater than 25-30 solar masses) end up as Wolf-Rayet stars which are deficient in hydrogen because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion produces ejecta of low kinetic energy, a faint optical display and a small mass fraction of radioactive nickel(1,2,3). An alternative origin for low energy supernovae is the collapse of the oxygen-neon core of a relatively lowmass star (7-9 solar masses) through electron capture(4,5). However no weak, hydrogen deficient, core-collapse supernovae are known. Here we report that such faint, low energy core-collapse supernovae do exist, and show that SN2008ha is the faintest hydrogen poor supernova ever observed. We propose that other similar events have been observed but they have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN2002cx-like events(6)). This discovery could link these faint supernovae to some long duration gamma-ray bursts. Extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce those long gamma-ray bursts whose afterglows do not show evidence of association with supernovae (7,8,9).Comment: Submitted 12 January 2009 - Accepted 24 March 200

    The nebular spectra of the transitional Type Ia Supernovae 2007on and 2011iv: Broad, multiple components indicate aspherical explosion cores

    Get PDF
    The nebular-epoch spectrum of the rapidly declining, 'transitional' Type Ia supernova (SN) 2007on showed double emission peaks, which have been interpreted as indicating that the SN was the result of the direct collision of two white dwarfs. The spectrum can be reproduced using two distinct emission components, one redshifted and one blueshifted. These components are similar in mass but have slightly different degrees of ionization. They recede from one another at a line-of-sight speed larger than the sum of the combined expansion velocities of their emitting cores, thereby acting as two independent nebulae. While this configuration appears to be consistent with the scenario of two white dwarfs colliding, it may also indicate an off-centre delayed detonation explosion of a near-Chandrasekhar-mass white dwarf. In either case, broad emission line widths and a rapidly evolving light curve can be expected for the bolometric luminosity of the SN. This is the case for both SNe 2007on and 2011iv, also a transitional SN Ia that exploded in the same elliptical galaxy, NGC1404. Although SN 2011iv does not show double-peaked emission line profiles, the width of its emission lines is such that a two-component model yields somewhat better results than a single-component model. Most of the mass ejected is in one component, however, which suggests that SN 2011iv was the result of the off-centre ignition of a Chandrasekhar-mass white dwarf. © 2017 The Authors

    DNA adducts in fish following an oil spill exposure

    Get PDF
    On 12 December 1999, one third of the load of the Erika tanker, amounting to about 10,000 t crude oil flowed into sea waters close to the French Atlantic Coast. This oil contained polycyclic aromatic compounds (PAC) that are known to be genotoxic. Genotoxic effects induce DNA adducts formation, which can thus be used as pollution biomarkers. Here, we assessed the genotoxic impact of the “Erika” oil spill by DNA adducts detection in the liver of immature fishes (Solea solea) from four locations of the French Brittany coasts. Two months after the spill, a high amount of DNA adducts was found in samples from all locations, amounting to 92–290 DNA adduct per 109 nucleotides. Then total DNA adduct levels decreased to reach about 50 adducts per 109 nucleotides nine months after the spill. In vitro experiments using human cell cultures and fish liver microsomes evidence the genotoxicity of the Erika fuel. They also prove the formation of reactive species able to create DNA adducts. Furthermore, in vitro and in vivo DNA adducts fingerprints are similar, thus confirming that DNA adducts are a result of the oil spill
    corecore