335 research outputs found

    ‘Trial and error…’, ‘…happy patients’ and ‘…an old toy in the cupboard’: a qualitative investigation of factors that influence practitioners in their prescription of foot orthoses

    Get PDF
    Background: Foot orthoses are used to manage of a plethora of lower limb conditions. However, whilst the theoretical foundations might be relatively consistent, actual practices and therefore the experience of patients is likely to be less so. The factors that affect the prescription decisions that practitioners make about individual patients is unknown and hence the way in which clinical experience interacts with knowledge from training is not understood. Further, other influences on orthotic practice may include the adoption (or not) of technology. Hence the aim of this study was to explore, for the first time, the influences on orthotic practice. Methods: A qualitative approach was adopted utilising two focus groups (16 consenting participants in total; 15 podiatrists and 1 orthotist) in order to collect the data. An opening question “What factors influence your orthotic practice?” was followed with trigger questions, which were used to maintain focus. The dialogue was recorded digitally, transcribed verbatim and a thematic framework was used to analyse the data. Results: There were five themes: (i) influences on current practice, (ii) components of current practice, (iii) barriers to technology being used in clinical practice, (iv) how technology could enhance foot orthoses prescription and measurement of outcomes, and (v) how technology could provide information for practitioners and patients. A final global theme was agreed by the researchers and the participants: ‘Current orthotic practice is variable and does not embrace technology as it is perceived as being not fit for purpose in the clinical environment. However, practitioners do have a desire for technology that is usable and enhances patient focussed assessment, the interventions, the clinical outcomes and the patient’s engagement throughout these processes’. Conclusions: In relation to prescribing foot orthoses, practice varies considerably due to multiple influences. Measurement of outcomes from orthotic practice is a priority but there are no current norms for achieving this. There have been attempts by practitioners to integrate technology into their practice, but with largely negative experiences. The process of technology development needs to improve and have a more practice, rather than technology focus

    Foot kinematics in patients with two patterns of pathological plantar hyperkeratosis

    Get PDF
    Background: The Root paradigm of foot function continues to underpin the majority of clinical foot biomechanics practice and foot orthotic therapy. There are great number of assumptions in this popular paradigm, most of which have not been thoroughly tested. One component supposes that patterns of plantar pressure and associated hyperkeratosis lesions should be associated with distinct rearfoot, mid foot, first metatarsal and hallux kinematic patterns. Our aim was to investigate the extent to which this was true. Methods: Twenty-seven subjects with planter pathological hyperkeratosis were recruited into one of two groups. Group 1 displayed pathological plantar hyperkeratosis only under metatarsal heads 2, 3 and 4 (n = 14). Group 2 displayed pathological plantar hyperkeratosis only under the 1st and 5th metatarsal heads (n = 13). Foot kinematics were measured using reflective markers on the leg, heel, midfoot, first metatarsal and hallux. Results: The kinematic data failed to identify distinct differences between these two groups of subjects, however there were several subtle (generally <3°) differences in kinematic data between these groups. Group 1 displayed a less everted heel, a less abducted heel and a more plantarflexed heel compared to group 2, which is contrary to the Root paradigm. Conclusions: There was some evidence of small differences between planter pathological hyperkeratosis groups. Nevertheless, there was too much similarity between the kinematic data displayed in each group to classify them as distinct foot types as the current clinical paradigm proposes

    Movement of the human foot in 100 pain free individuals aged 18–45 : implications for understanding normal foot function

    Get PDF
    Background: Understanding motion in the normal healthy foot is a prerequisite for understanding the effects of pathology and thereafter setting targets for interventions. Quality foot kinematic data from healthy feet will also assist the development of high quality and research based clinical models of foot biomechanics. To address gaps in the current literature we aimed to describe 3D foot kinematics using a 5 segment foot model in a population of 100 pain free individuals. Methods: Kinematics of the leg, calcaneus, midfoot, medial and lateral forefoot and hallux were measured in 100 self reported healthy and pain free individuals during walking. Descriptive statistics were used to characterise foot movements. Contributions from different foot segments to the total motion in each plane were also derived to explore functional roles of different parts of the foot. Results: Foot segments demonstrated greatest motion in the sagittal plane, but large ranges of movement in all planes. All foot segments demonstrated movement throughout gait, though least motion was observed between the midfoot and calcaneus. There was inconsistent evidence of movement coupling between joints. There were clear differences in motion data compared to foot segment models reported in the literature. Conclusions: The data reveal the foot is a multiarticular structure, movements are complex, show incomplete evidence of coupling, and vary person to person. The data provide a useful reference data set against which future experimental data can be compared and may provide the basis for conceptual models of foot function based on data rather than anecdotal observations

    Optimal timing for managed relocation of species faced with climate change

    Get PDF
    Managed relocation is a controversial climate-adaptation strategy to combat negative climate change impacts on biodiversity. While the scientific community debates the merits of managed relocation(1-12), species are already being moved to new areas predicted to be more suitable under climate change(13,14). To inform these moves, we construct a quantitative decision framework to evaluate the timing of relocation in the face of climate change. We find that the optimal timing depends on many factors, including the size of the population, the demographic costs of translocation and the expected carrying capacities over time in the source and destination habitats. In some settings, such as when a small population would benefit from time to grow before risking translocation losses, haste is ill advised. We also find that active adaptive management(15,16) is valuable when the effect of climate change on source habitat is uncertain, and leads to delayed movement

    Comparison of foot orthoses made by podiatrists, pedorthists and orthotists regarding plantar pressure reduction in The Netherlands

    Get PDF
    BACKGROUND: There is a need for evidence of clinical effectiveness of foot orthosis therapy. This study evaluated the effect of foot orthoses made by ten podiatrists, ten pedorthists and eleven orthotists on plantar pressure and walking convenience for three patients with metatarsalgia. Aims were to assess differences and variability between and within the disciplines. The relationship between the importance of pressure reduction and the effect on peak pressure was also evaluated. METHODS: Each therapist examined all three patients and was asked to rate the 'importance of pressure reduction' through a visual analogue scale. The orthoses were evaluated twice in two sessions while the patient walked on a treadmill. Plantar pressures were recorded with an in-sole measuring system. Patients scored walking convenience per orthosis. The effects of the orthoses on peak pressure reduction were calculated for the whole plantar surface of the forefoot and six regions: big toe and metatarsal one to five. RESULTS: Within each discipline there was an extensive variation in construction of the orthoses and achieved peak pressure reductions. Pedorthists and orthotists achieved greater maximal peak pressure reductions calculated over the whole forefoot than podiatrists: 960, 1020 and 750 kPa, respectively (p < .001). This was also true for the effect in the regions with the highest baseline peak pressures and walking convenience rated by patients A and B. There was a weak relationship between the 'importance of pressure reduction' and the achieved pressure reduction for orthotists, but no relationship for podiatrists and pedorthotists. CONCLUSION: The large variation for various aspects of foot orthoses therapy raises questions about a consistent use of concepts for pressures management within the professional groups

    The instantaneous helical axis of the subtalar and talocrural joints: a non-invasive in vivo dynamic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An understanding of rear-foot (talocrural and subtalar joints) kinematics is critical for diagnosing foot pathologies, designing total ankle implants, treating rear-foot injuries and quantifying gait abnormalities. The majority of kinematic data available have been acquired through static cadaver work or passive <it>in vivo </it>studies. The applicability of these data to dynamic <it>in vivo </it>situations remains unknown. Thus, the purpose of this study was to fully quantify subtalar, talocrural and calcaneal-tibial <it>in vivo </it>kinematics in terms of the instantaneous helical axis (IHA) in twenty-five healthy ankles during a volitional activity that simulated single-leg toe-raises with partial-weight support, requiring active muscle control.</p> <p>Methods</p> <p>Subjects were each placed supine in a 1.5 T MRI and asked to repeat this simulated toe-raise while a full sagittal-cine-phase contrast (dynamic) MRI dataset was acquired. From the cine-phase contrast velocity a full kinematic description for each joint was derived.</p> <p>Results</p> <p>Nearly all motion quantified at the calcaneal-tibial joint was attributable to the talocrural joint. The subtalar IHA orientation and position were highly variable; whereas, the talocrural IHA orientation and position were extremely consistent.</p> <p>Conclusion</p> <p>The talocrural was well described by the IHA and could be modeled as a fixed-hinge joint, whereas the subtalar could not be.</p

    Predictors of Ips confusus Outbreaks During a Record Drought in Southwestern USA: Implications for Monitoring and Management

    Get PDF
    In many ecosystems the effects of disturbance can be cryptic and disturbance may vary in subtle spatiotemporal ways. For instance, we know that bark beetle outbreaks are more frequent in temperate forests during droughts; however, we have little idea about why they occur in some locations and not others. Understanding biotic and abiotic factors promoting bark beetle outbreaks can be critical to predicting and responding to pest outbreaks. Here we address the environmental factors which are associated with Ips confusus outbreaks during the 2002 widespread drought within the distribution range of pinyon pine woodlands in Arizona. We used univariate statistics to test if whether tree characteristics, other herbivores, stand properties, soil type, wind, and topography were associated with I. confusus outbreak, and logistic regression to create a predictive model for the outbreaks. We found that I. confusus attacks occur in low elevation stands on steeper slopes, where favorable winds for I. confusus dispersion occur. I. confusus select larger trees, in high density stands with understory shrubs that exhibit phenotypic traits characteristic of resistance to stem-boring moths. The model was highly accurate, and explained 95% of the variability in occurrence (98% of the absences and 95% of the presences). Accurate prediction of the impacts of disturbance allow us to anticipate, minimize or mitigate for and eventually counteract its effects, especially those affecting diversity and ecosystem function. Identification of outbreak risk areas can guide regional and national management towards the reduction of infestation risk and enhancing conservation of pinyon-juniper woodlands

    Inter-assessor reliability of practice based biomechanical assessment of the foot and ankle

    Get PDF
    Background There is no consensus on which protocols should be used to assess foot and lower limb biomechanics in clinical practice. The reliability of many assessments has been questioned by previous research. The aim of this investigation was to (i) identify (through consensus) what biomechanical examinations are used in clinical practice and (ii) evaluate the inter-assessor reliability of some of these examinations. Methods Part1: Using a modified Delphi technique 12 podiatrists derived consensus on the biomechanical examinations used in clinical practice. Part 2: Eleven podiatrists assessed 6 participants using a subset of the assessment protocol derived in Part 1. Examinations were compared between assessors. Results Clinicians choose to estimate rather than quantitatively measure foot position and motion. Poor inter-assessor reliability was recorded for all examinations. Intra-class correlation coefficient values (ICC) for relaxed calcaneal stance position were less than 0.23 and were less than 0.14 for neutral calcaneal stance position. For the examination of ankle joint dorsiflexion, ICC values suggest moderate reliability (less than 0.61). The results of a random effects ANOVA highlight that participant (up to 5.7°), assessor (up to 5.8°) and random (upto 5.7°) error all contribute to the total error (up to 9.5° for relaxed calcaneal stance position, up to 10.7° for the examination of ankle joint dorsiflexion). Kappa Fleiss values for categorisation of first ray position and mobility were less than 0.05 and for limb length assessment less than 0.02, indicating slight agreement. Conclusion Static biomechanical assessment of the foot, leg and lower limb is an important protocol in clinical practice, but the key examinations used to make inferences about dynamic foot function and to determine orthotic prescription are unreliable

    Efficacy of customised foot orthoses in the treatment of achilles tendinopathy : study protocol for a randomised trial

    Get PDF
    BACKGROUND: Achilles tendinopathy is a common condition that can cause marked pain and disability. Numerous non-surgical treatments have been proposed for the treatment of this condition, but many of these treatments have a poor or non-existent evidence base. The exception to this is eccentric calf muscle exercises, which have become a standard non-surgical intervention for Achilles tendinopathy. Foot orthoses have also been advocated as a treatment for Achilles tendinopathy, but the long-term efficacy of foot orthoses for this condition is unknown. This manuscript describes the design of a randomised trial to evaluate the efficacy of customised foot orthoses to reduce pain and improve function in people with Achilles tendinopathy. METHODS: One hundred and forty community-dwelling men and women aged 18 to 55 years with Achilles tendinopathy (who satisfy inclusion and exclusion criteria) will be recruited. Participants will be randomised, using a computer-generated random number sequence, to either a control group (sham foot orthoses made from compressible ethylene vinyl acetate foam) or an experimental group (customised foot orthoses made from semi-rigid polypropylene). Both groups will be prescribed a calf muscle eccentric exercise program, however, the primary difference between the groups will be that the experimental group receive customised foot orthoses, while the control group receive sham foot orthoses. The participants will be instructed to perform eccentric exercises 2 times per day, 7 days per week, for 12 weeks. The primary outcome measure will be the total score of the Victorian Institute of Sport Assessment - Achilles (VISA-A) questionnaire. The secondary outcome measures will be participant perception of treatment effect, comfort of the foot orthoses, use of co-interventions, frequency and severity of adverse events, level of physical activity and health-related quality of life (assessed using the Short-Form-36 questionnaire - Version two). Data will be collected at baseline, then at 1, 3, 6 and 12 months. Data will be analysed using the intention to treat principle. DISCUSSION: This study is the first randomised trial to evaluate the long-term efficacy of customised foot orthoses for the treatment of Achilles tendinopathy. The study has been pragmatically designed to ensure that the study findings are generalisable to clinical practice. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry Number: ACTRN12609000829213
    corecore