54 research outputs found

    The development of path integration: combining estimations of distance and heading

    Get PDF
    Efficient daily navigation is underpinned by path integration, the mechanism by which we use self-movement information to update our position in space. This process is well-understood in adulthood, but there has been relatively little study of path integration in childhood, leading to an underrepresentation in accounts of navigational development. Previous research has shown that calculation of distance and heading both tend to be less accurate in children as they are in adults, although there have been no studies of the combined calculation of distance and heading that typifies naturalistic path integration. In the present study 5-year-olds and 7-year-olds took part in a triangle-completion task, where they were required to return to the startpoint of a multi-element path using only idiothetic information. Performance was compared to a sample of adult participants, who were found to be more accurate than children on measures of landing error, heading error, and distance error. 7-year-olds were significantly more accurate than 5-year-olds on measures of landing error and heading error, although the difference between groups was much smaller for distance error. All measures were reliably correlated with age, demonstrating a clear development of path integration abilities within the age range tested. Taken together, these data make a strong case for the inclusion of path integration within developmental models of spatial navigational processing

    Knots: Attractive Places with High Path Tortuosity in Mouse Open Field Exploration

    Get PDF
    When introduced into a novel environment, mammals establish in it a preferred place marked by the highest number of visits and highest cumulative time spent in it. Examination of exploratory behavior in reference to this “home base” highlights important features of its organization. It might therefore be fruitful to search for other types of marked places in mouse exploratory behavior and examine their influence on overall behavior

    Perceived Object Stability Depends on Multisensory Estimates of Gravity

    Get PDF
    BACKGROUND: How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object's stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information. METHODOLOGY/PRINCIPAL FINDINGS: In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity). CONCLUSIONS/SIGNIFICANCE: Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall

    Contribution of Cerebellar Sensorimotor Adaptation to Hippocampal Spatial Memory

    Get PDF
    Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation

    Learning new sensorimotor contingencies:Effects of long-term use of sensory augmentation on the brain and conscious perception

    Get PDF
    Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation

    Integration of vestibular and proprioceptive signals for spatial updating

    Get PDF
    Frissen I, Campos JL, Souman JL, Ernst MO. Integration of vestibular and proprioceptive signals for spatial updating. Experimental Brain Research. 2011;212(2):163-176.Spatial updating during self-motion typically involves the appropriate integration of both visual and non-visual cues, including vestibular and proprioceptive information. Here, we investigated how human observers combine these two non-visual cues during full-stride curvilinear walking. To obtain a continuous, real-time estimate of perceived position, observers were asked to continuously point toward a previously viewed target in the absence of vision. They did so while moving on a large circular treadmill under various movement conditions. Two conditions were designed to evaluate spatial updating when information was largely limited to either proprioceptive information (walking in place) or vestibular information (passive movement). A third condition evaluated updating when both sources of information were available (walking through space) and were either congruent or in conflict. During both the passive movement condition and while walking through space, the pattern of pointing behavior demonstrated evidence of accurate egocentric updating. In contrast, when walking in place, perceived self-motion was underestimated and participants always adjusted the pointer at a constant rate, irrespective of changes in the rate at which the participant moved relative to the target. The results are discussed in relation to the maximum likelihood estimation model of sensory integration. They show that when the two cues were congruent, estimates were combined, such that the variance of the adjustments was generally reduced. Results also suggest that when conflicts were introduced between the vestibular and proprioceptive cues, spatial updating was based on a weighted average of the two inputs
    corecore