20 research outputs found

    Notch signaling during human T cell development

    Get PDF
    Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse

    DomPep—A General Method for Predicting Modular Domain-Mediated Protein-Protein Interactions

    Get PDF
    Protein-protein interactions (PPIs) are frequently mediated by the binding of a modular domain in one protein to a short, linear peptide motif in its partner. The advent of proteomic methods such as peptide and protein arrays has led to the accumulation of a wealth of interaction data for modular interaction domains. Although several computational programs have been developed to predict modular domain-mediated PPI events, they are often restricted to a given domain type. We describe DomPep, a method that can potentially be used to predict PPIs mediated by any modular domains. DomPep combines proteomic data with sequence information to achieve high accuracy and high coverage in PPI prediction. Proteomic binding data were employed to determine a simple yet novel parameter Ligand-Binding Similarity which, in turn, is used to calibrate Domain Sequence Identity and Position-Weighted-Matrix distance, two parameters that are used in constructing prediction models. Moreover, DomPep can be used to predict PPIs for both domains with experimental binding data and those without. Using the PDZ and SH2 domain families as test cases, we show that DomPep can predict PPIs with accuracies superior to existing methods. To evaluate DomPep as a discovery tool, we deployed DomPep to identify interactions mediated by three human PDZ domains. Subsequent in-solution binding assays validated the high accuracy of DomPep in predicting authentic PPIs at the proteome scale. Because DomPep makes use of only interaction data and the primary sequence of a domain, it can be readily expanded to include other types of modular domains

    Machine Learning Methods for Prediction of CDK-Inhibitors

    Get PDF
    Progression through the cell cycle involves the coordinated activities of a suite of cyclin/cyclin-dependent kinase (CDK) complexes. The activities of the complexes are regulated by CDK inhibitors (CDKIs). Apart from its role as cell cycle regulators, CDKIs are involved in apoptosis, transcriptional regulation, cell fate determination, cell migration and cytoskeletal dynamics. As the complexes perform crucial and diverse functions, these are important drug targets for tumour and stem cell therapeutic interventions. However, CDKIs are represented by proteins with considerable sequence heterogeneity and may fail to be identified by simple similarity search methods. In this work we have evaluated and developed machine learning methods for identification of CDKIs. We used different compositional features and evolutionary information in the form of PSSMs, from CDKIs and non-CDKIs for generating SVM and ANN classifiers. In the first stage, both the ANN and SVM models were evaluated using Leave-One-Out Cross-Validation and in the second stage these were tested on independent data sets. The PSSM-based SVM model emerged as the best classifier in both the stages and is publicly available through a user-friendly web interface at http://bioinfo.icgeb.res.in/cdkipred

    Semi-Automated Image Analysis for the Assessment of Megafaunal Densities at the Arctic Deep-Sea Observatory HAUSGARTEN

    Get PDF
    Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change. Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e. overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri remain challenging, for both human observers and iSIS

    Semi-Automated Image Analysis for the Assessment of Megafaunal Densities at the Arctic Deep-Sea Observatory HAUSGARTEN

    Get PDF
    Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change. Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e. overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri remain challenging, for both human observers and iSIS

    Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome

    Get PDF

    Developmental gene networks: a triathlon on the course to T cell identity

    Full text link

    Notch induces human T-cell receptor γδ+ thymocytes to differentiate along a parallel, highly proliferative and bipotent CD4 CD8 double-positive pathway

    No full text
    In wild-type mice, T-cell receptor (TCR) gamma delta(+) cells differentiate along a CD4 CD8 double-negative (DN) pathway whereas TCR alpha beta(+) cells differentiate along the double-positive (DP) pathway. In the human postnatal thymus (PNT), DN, DP and single-positive (SP) TCR gamma delta(+) populations are present. Here, the precursor-progeny relationship of the various PNT TCR gamma delta(+) populations was studied and the role of the DP TCR gamma delta(+) population during T-cell differentiation was elucidated. We demonstrate that human TCR gamma delta(+) cells differentiate along two pathways downstream from an immature CD1(+) DN TCR gamma delta(+) precursor: a Notch-independent DN pathway generating mature DN and CD8 alpha alpha SP TCR gamma delta(+) cells, and a Notch-dependent, highly proliferative DP pathway generating immature CD4 SP and subsequently DP TCR gamma delta(+) populations. DP TCR gamma delta(+) cells are actively rearranging the TCR alpha locus, and differentiate to TCR- DP cells, to CD8 alpha beta SP TCR gamma delta(+) cells and to TCR alpha beta(+) cells. Finally, we show that the gamma delta subset of T-cell acute lymphoblastic leukemias (T-ALL) consists mainly of CD4 SP or DP phenotypes carrying significantly more activating Notch mutations than DN T-ALL. The latter suggests that activating Notch mutations in TCR gamma delta(+) thymocytes induce proliferation and differentiation along the DP pathway in vivo
    corecore