297 research outputs found

    Application of the PM6 method to modeling the solid state

    Get PDF
    The applicability of the recently developed PM6 method for modeling various properties of a wide range of organic and inorganic crystalline solids has been investigated. Although the geometries of most systems examined were reproduced with good accuracy, severe errors were found in the predicted structures of a small number of solids. The origin of these errors was investigated, and a strategy for improving the method proposed

    A new scheme to calculate isotope effects

    Get PDF
    We present a new scheme to calculate isotope effects. Only selected frequencies at the target level of theory are calculated. The frequencies are selected by an analysis of the Hessian from a lower level of theory. We obtain accurate isotope effects without calculating the full Hessian at the target level of theory. The calculated frequencies are very accurate. The scheme converges to the correct isotope effect

    Topological mechanochemistry of graphene

    Full text link
    In view of a formal topology, two common terms, namely, connectivity and adjacency, determine the quality of C-C bonds of sp2 nanocarbons. The feature is the most sensitive point of the inherent topology of the species so that such external action as mechanical deformation should obviously change it and result in particular topological effects. The current paper describes the effects caused by uniaxial tension of a graphene molecule in due course of a mechanochemical reaction. Basing on the molecular theory of graphene, the effects are attributed to both mechanical loading and chemical modification of edge atoms of the molecule. The mechanical behavior is shown to be not only highly anisotropic with respect to the direction of the load application, but greatly dependent on the chemical modification of the molecule edge atoms thus revealing topological character of the graphene deformation.Comment: 9 pages, 10 figures, 1 table. arXiv admin note: text overlap with arXiv:1301.094

    Three applications of path integrals: equilibrium and kinetic isotope effects, and the temperature dependence of the rate constant of the [1,5] sigmatropic hydrogen shift in (Z)-1,3-pentadiene

    Get PDF
    Recent experiments have confirmed the importance of nuclear quantum effects even in large biomolecules at physiological temperature. Here we describe how the path integral formalism can be used to describe rigorously the nuclear quantum effects on equilibrium and kinetic properties of molecules. Specifically, we explain how path integrals can be employed to evaluate the equilibrium (EIE) and kinetic (KIE) isotope effects, and the temperature dependence of the rate constant. The methodology is applied to the [1,5] sigmatropic hydrogen shift in pentadiene. Both the KIE and the temperature dependence of the rate constant confirm the importance of tunneling and other nuclear quantum effects as well as of the anharmonicity of the potential energy surface. Moreover, previous results on the KIE were improved by using a combination of a high level electronic structure calculation within the harmonic approximation with a path integral anharmonicity correction using a lower level method.Comment: 9 pages, 4 figure

    Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance

    Get PDF
    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aro- matic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol sub- stituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logRe- sistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications

    Proton-Coupled Electron-Transfer Mechanism for the Radical Scavenging Activity of Cardiovascular Drug Dipyridamole

    Get PDF
    Dipyridamole (DIP) is a well-known pharmaceutical drug used as a coronary vasodilator and anti-platelet agent in clinics for treating several cardiovascular diseases. Primarily, the therapeutic effects of the drug are attributed to its antioxidant potency. In this research, we aim to declare the unknown antioxidant mechanism of DIP as well as its potent chain-breaking antioxidant activity in polar aqueous medium inside the cells, using different experimental methods and theoretical quantum calculations. Data demonstrated the higher antioxidant capacity of DIP against ROS and free radicals in polar cell's interior. DIP is capable of generating long living and noninvasive DIP• radicals in oxidant condition that leads to an effective “chain-breaking antioxidant” activity. Quantum computational data indicated that DIP antioxidant has more favorable ionization potential than trolox which means DIP has higher antioxidant activity. Also, data showed that the direct hydrogen-transfer is not a favorable process to construct DIP• because of high barrier energy, though electron-transfer process can more easily to produce DIP•+ with the lowest barrier energy. Altogether, the electron donating potency of DIP to reduce ferric ion, having the low anodic oxidation peak potential, producing long lived stable DIP• radicals and protecting myoblast cells from oxidation, proposed the excellent “chain-breaking antioxidant” potency via electron-transfer mechanism of this vasodilator DIP drug in polar aqueous medium

    The Energy Computation Paradox and ab initio Protein Folding

    Get PDF
    The routine prediction of three-dimensional protein structure from sequence remains a challenge in computational biochemistry. It has been intuited that calculated energies from physics-based scoring functions are able to distinguish native from nonnative folds based on previous performance with small proteins and that conformational sampling is the fundamental bottleneck to successful folding. We demonstrate that as protein size increases, errors in the computed energies become a significant problem. We show, by using error probability density functions, that physics-based scores contain significant systematic and random errors relative to accurate reference energies. These errors propagate throughout an entire protein and distort its energy landscape to such an extent that modern scoring functions should have little chance of success in finding the free energy minima of large proteins. Nonetheless, by understanding errors in physics-based score functions, they can be reduced in a post-hoc manner, improving accuracy in energy computation and fold discrimination

    Optical control of L-Type Ca2+ channels using a diltiazem photoswitch

    Get PDF
    L-type Ca2+ channels (LTCCs) play a crucial role in excitation-contraction coupling and release of hormones from secretory cells. They are targets of antihypertensive and antiarrhythmic drugs such as diltiazem. Here, we present a photoswitchable diltiazem, FHU-779, which can be used to reversibly block endogenous LTCCs by light. FHU-779 is as potent as diltiazem and can be used to place pancreatic β-cell function and cardiac activity under optical control
    corecore