36,030 research outputs found

    Prefix-Projection Global Constraint for Sequential Pattern Mining

    Full text link
    Sequential pattern mining under constraints is a challenging data mining task. Many efficient ad hoc methods have been developed for mining sequential patterns, but they are all suffering from a lack of genericity. Recent works have investigated Constraint Programming (CP) methods, but they are not still effective because of their encoding. In this paper, we propose a global constraint based on the projected databases principle which remedies to this drawback. Experiments show that our approach clearly outperforms CP approaches and competes well with ad hoc methods on large datasets

    Dimerization-Induced Fermi-Surface Reconstruction in IrTe2

    Get PDF
    We report a de Haas-van Alphen (dHvA) oscillation study on IrTe2 single crystals showing complex dimer formations. By comparing the angle dependence of dHvA oscillations with band structure calculations, we show distinct Fermi surface reconstruction induced by a 1/5-type and a 1/8-type dimerizations. This verifies that an intriguing quasi-two-dimensional conducting plane across the layers is induced by dimerization in both cases. A phase transition to the 1/8 phase with higher dimer density reveals that local instabilities associated with intra-and interdimer couplings are the main driving force for complex dimer formations in IrTe2.X11149sciescopu

    On O(1) contributions to the free energy in Bethe Ansatz systems: the exact g-function

    Get PDF
    We investigate the sub-leading contributions to the free energy of Bethe Ansatz solvable (continuum) models with different boundary conditions. We show that the Thermodynamic Bethe Ansatz approach is capable of providing the O(1) pieces if both the density of states in rapidity space and the quadratic fluctuations around the saddle point solution to the TBA are properly taken into account. In relativistic boundary QFT the O(1) contributions are directly related to the exact g-function. In this paper we provide an all-orders proof of the previous results of P. Dorey et al. on the g-function in both massive and massless models. In addition, we derive a new result for the g-function which applies to massless theories with arbitrary diagonal scattering in the bulk.Comment: 28 pages, 2 figures, v2: minor corrections, v3: minor corrections and references adde

    Comparison of two closed-path cavity-based spectrometers for measuring air-water CO<inf>2</inf> and CH<inf>4</inf> fluxes by eddy covariance

    Get PDF
    In recent years several commercialised closed-path cavity-based spectroscopic instruments designed for eddy covariance flux measurements of carbon dioxide (CO2), methane (CH4), and water vapour (H2O) have become available. Here we compare the performance of two leading models - the Picarro G2311-f and the Los Gatos Research (LGR) Fast Greenhouse Gas Analyzer (FGGA) at a coastal site. Both instruments can compute dry mixing ratios of CO2 and CH4 based on concurrently measured H2O, temperature, and pressure. Additionally, we used a high throughput Nafion dryer to physically remove H2O from the Picarro airstream. Observed air-sea CO2 and CH4 fluxes from these two analysers, averaging about 12 and 0.12 mmol m-2 day-1 respectively, agree within the measurement uncertainties. For the purpose of quantifying dry CO2 and CH4 fluxes downstream of a long inlet, the numerical H2O corrections appear to be reasonably effective and lead to results that are comparable to physical removal of H2O with a Nafion dryer in the mean. We estimate the high-frequency attenuation of fluxes in our closed-path set-up, which was relatively small (≤ 10 %) for CO2 and CH4 but very large for the more polar H2O. The Picarro showed significantly lower noise and flux detection limits than the LGR. The hourly flux detection limit for the Picarro was about 2 mmol m-2 day-1 for CO2 and 0.02 mmol m-2 day-1 for CH4. For the LGR these detection limits were about 8 and 0.05 mmol m-2 day-1. Using global maps of monthly mean air-sea CO2 flux as reference, we estimate that the Picarro and LGR can resolve hourly CO2 fluxes from roughly 40 and 4 % of the world's oceans respectively. Averaging over longer timescales would be required in regions with smaller fluxes. Hourly flux detection limits of CH4 from both instruments are generally higher than the expected emissions from the open ocean, though the signal to noise of this measurement may improve closer to the coast

    Service composition in stochastic settings

    Get PDF
    With the growth of the Internet-of-Things and online Web services, more services with more capabilities are available to us. The ability to generate new, more useful services from existing ones has been the focus of much research for over a decade. The goal is, given a specification of the behavior of the target service, to build a controller, known as an orchestrator, that uses existing services to satisfy the requirements of the target service. The model of services and requirements used in most work is that of a finite state machine. This implies that the specification can either be satisfied or not, with no middle ground. This is a major drawback, since often an exact solution cannot be obtained. In this paper we study a simple stochastic model for service composition: we annotate the tar- get service with probabilities describing the likelihood of requesting each action in a state, and rewards for being able to execute actions. We show how to solve the resulting problem by solving a certain Markov Decision Process (MDP) derived from the service and requirement specifications. The solution to this MDP induces an orchestrator that coincides with the exact solution if a composition exists. Otherwise it provides an approximate solution that maximizes the expected sum of values of user requests that can be serviced. The model studied although simple shades light on composition in stochastic settings and indeed we discuss several possible extensions

    Second best toll and capacity optimisation in network: solution algorithm and policy implications

    Get PDF
    This paper looks at the first and second-best jointly optimal toll and road capacity investment problems from both policy and technical oriented perspectives. On the technical side, the paper investigates the applicability of the constraint cutting algorithm for solving the second-best problem under elastic demand which is formulated as a bilevel programming problem. The approach is shown to perform well despite several problems encountered by our previous work in Shepherd and Sumalee (2004). The paper then applies the algorithm to a small sized network to investigate the policy implications of the first and second-best cases. This policy analysis demonstrates that the joint first best structure is to invest in the most direct routes while reducing capacities elsewhere. Whilst unrealistic this acts as a useful benchmark. The results also show that certain second best policies can achieve a high proportion of the first best benefits while in general generating a revenue surplus. We also show that unless costs of capacity are known to be low then second best tolls will be affected and so should be analysed in conjunction with investments in the network
    corecore