12 research outputs found

    Optimization of atmospheric plasma treatment of LDPE films: Influence on adhesive properties and ageing behavior

    Full text link
    One of the major disadvantages of low density polyethylene (LDPE) films is their poor adhesive properties. Therefore, LDPE films have been treated with atmospheric pressure air plasma in order to improve their surface properties. So as to simulate the possible conditions in an industrial process, the samples have been treated with two different sample distances (6 and 10 mm), and treatment rates between 100 and 1000 mm s-1. The different sample distances are the distance of the sample from the plasma source. The variation of the surface properties and adhesion characteristics of the films were investigated for different aging times after plasma exposure (up to 21 days) using contact angle measurement, atomic force microscopy, weight loss measurements and shear test. Results show that the treatment increases the polar component () and these changes improve adhesive properties of the material. After the twenty-first day, the ageing process causes a decrease of wettability and adhesive properties of the LDPE films (up to 60%).Fombuena Borrás, V.; García Sanoguera, D.; Sánchez Nacher, L.; Balart Gimeno, RA.; Boronat Vitoria, T. (2014). Optimization of atmospheric plasma treatment of LDPE films: Influence on adhesive properties and ageing behavior. Journal of Adhesion Science and Technology. 28(1):97-113. doi:10.1080/01694243.2013.847045S97113281Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536-542. doi:10.1016/j.jhazmat.2007.06.076Friedman, M., & Walsh, G. (2002). High performance films: Review of new materials and trends. Polymer Engineering & Science, 42(8), 1756-1788. doi:10.1002/pen.11069Wiles, D. M., & Scott, G. (2006). Polyolefins with controlled environmental degradability. Polymer Degradation and Stability, 91(7), 1581-1592. doi:10.1016/j.polymdegradstab.2005.09.010Gao, J., Lei, J., Li, Q., & Ye, S. (2004). Functionalized low-density polyethylene via a novel photografting method and its adhesion properties. Journal of Adhesion Science and Technology, 18(2), 195-203. doi:10.1163/156856104772759403Shenton, M. J., Lovell-Hoare, M. C., & Stevens, G. C. (2001). Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. Journal of Physics D: Applied Physics, 34(18), 2754-2760. doi:10.1088/0022-3727/34/18/307Belgacem, M. N., Salon-Brochier, M. C., Krouit, M., & Bras, J. (2011). Recent Advances in Surface Chemical Modification of Cellulose Fibres. Journal of Adhesion Science and Technology, 25(6-7), 661-684. doi:10.1163/016942410x525867Friedrich, J., Unger, W., & Lippitz, A. (1995). Plasma modification of polymer surfaces. Macromolecular Symposia, 100(1), 111-115. doi:10.1002/masy.19951000118Ladizesky, N. H., & Ward, I. M. (1989). The adhesion behaviour of high modulus polyethylene fibres following plasma and chemical treatment. Journal of Materials Science, 24(10), 3763-3773. doi:10.1007/bf02385768Nardin, M., & Ward, I. M. (1987). Influence of surface treatment on adhesion of polyethylene fibres. Materials Science and Technology, 3(10), 814-826. doi:10.1179/mst.1987.3.10.814Villagra Di Carlo, B., Gottifredi, J. C., & Habert, A. C. (2010). Synthesis and characterization of composite membrane by deposition of acrylic acid plasma polymer onto pre-treated polyethersulfone support. Journal of Materials Science, 46(6), 1850-1856. doi:10.1007/s10853-010-5012-4Matsunaga, M., & Whitney, P. J. (2000). Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonisation. Polymer Degradation and Stability, 70(3), 325-332. doi:10.1016/s0141-3910(00)00105-1Novák, I., Pollák, V., & Chodák, I. (2006). Study of Surface Properties of Polyolefins Modified by Corona Discharge Plasma. Plasma Processes and Polymers, 3(4-5), 355-364. doi:10.1002/ppap.200500163Arpagaus, C., Rossi, A., & Rudolf von Rohr, P. (2005). Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor – process, wettability improvement and ageing effects. Applied Surface Science, 252(5), 1581-1595. doi:10.1016/j.apsusc.2005.02.099Morra, M., Occhiello, E., Marola, R., Garbassi, F., Humphrey, P., & Johnson, D. (1990). On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid and Interface Science, 137(1), 11-24. doi:10.1016/0021-9797(90)90038-pKim, K. S., Ryu, C. M., Park, C. S., Sur, G. S., & Park, C. E. (2003). Investigation of crystallinity effects on the surface of oxygen plasma treated low density polyethylene using X-ray photoelectron spectroscopy. Polymer, 44(20), 6287-6295. doi:10.1016/s0032-3861(03)00674-8Kim, S. H., Ha, H. J., Ko, Y. K., Yoon, S. J., Rhee, J. M., Kim, M. S., … Khang, G. (2007). Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. Journal of Biomaterials Science, Polymer Edition, 18(5), 609-622. doi:10.1163/156856207780852514Borcia, G., Anderson, C. A., & Brown, N. M. D. (2004). The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I. Applied Surface Science, 221(1-4), 203-214. doi:10.1016/s0169-4332(03)00879-1Pascual, M., Calvo, O., Sanchez-Nácher, L., Bonet, M. A., Garcia-Sanoguera, D., & Balart, R. (2009). Optimization of adhesive joints of low density polyethylene (LDPE) composite laminates with polyolefin foam using corona discharge plasma. Journal of Applied Polymer Science, 114(5), 2971-2977. doi:10.1002/app.30906Encinas, N., Díaz-Benito, B., Abenojar, J., & Martínez, M. A. (2010). Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surface and Coatings Technology, 205(2), 396-402. doi:10.1016/j.surfcoat.2010.06.069Takke, V., Behary, N., Perwuelz, A., & Campagne, C. (2009). Studies on the atmospheric air-plasma treatment of PET (polyethylene terephtalate) woven fabrics: Effect of process parameters and of aging. Journal of Applied Polymer Science, 114(1), 348-357. doi:10.1002/app.30618Awaja, F., Gilbert, M., Kelly, G., Fox, B., & Pigram, P. J. (2009). Adhesion of polymers. Progress in Polymer Science, 34(9), 948-968. doi:10.1016/j.progpolymsci.2009.04.007Garcia, D., Sanchez, L., Fenollar, O., Lopez, R., & Balart, R. (2008). Modification of polypropylene surface by CH4–O2 low-pressure plasma to improve wettability. Journal of Materials Science, 43(10), 3466-3473. doi:10.1007/s10853-007-2322-2Guimond, S., & Wertheimer, M. R. (2004). Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge. Journal of Applied Polymer Science, 94(3), 1291-1303. doi:10.1002/app.21134Pascual, M., Balart, R., Sánchez, L., Fenollar, O., & Calvo, O. (2008). Study of the aging process of corona discharge plasma effects on low density polyethylene film surface. Journal of Materials Science, 43(14), 4901-4909. doi:10.1007/s10853-008-2712-0Sanchis, R., Fenollar, O., García, D., Sánchez, L., & Balart, R. (2008). Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. International Journal of Adhesion and Adhesives, 28(8), 445-451. doi:10.1016/j.ijadhadh.2008.04.002Fresnais, J., Chapel, J. P., Benyahia, L., & Poncin-Epaillard, F. (2009). Plasma-Treated Superhydrophobic Polyethylene Surfaces: Fabrication, Wetting and Dewetting Properties. Journal of Adhesion Science and Technology, 23(3), 447-467. doi:10.1163/156856108x370127Abenojar, J., Colera, I., Martínez, M. A., & Velasco, F. (2010). Study by XPS of an Atmospheric Plasma-Torch Treated Glass: Influence on Adhesion. Journal of Adhesion Science and Technology, 24(11-12), 1841-1854. doi:10.1163/016942410x507614Lommatzsch, U., Pasedag, D., Baalmann, A., Ellinghorst, G., & Wagner, H.-E. (2007). Atmospheric Pressure Plasma Jet Treatment of Polyethylene Surfaces for Adhesion Improvement. Plasma Processes and Polymers, 4(S1), S1041-S1045. doi:10.1002/ppap.200732402Balu, B., Berry, A. D., Patel, K. T., Breedveld, V., & Hess, D. W. (2011). Directional Mobility and Adhesion of Water Drops on Patterned Superhydrophobic Surfaces. Journal of Adhesion Science and Technology, 25(6-7), 627-642. doi:10.1163/016942410x525849Bhattacharya, S., Singh, R. K., Mandal, S., Ghosh, A., Bok, S., Korampally, V., … Gangopadhyay, S. (2010). Plasma Modification of Polymer Surfaces and Their Utility in Building Biomedical Microdevices. Journal of Adhesion Science and Technology, 24(15-16), 2707-2739. doi:10.1163/016942410x511105Das, S., Neogi, S., Chainy, G. B. N., & Guha, S. K. (2011). A Novel Two-Step Procedure for Plasma Surface Modification of Low-Density Polyethylene for Improved Drug Adhesion in Intra Uterine Devices (IUDs). Journal of Adhesion Science and Technology, 25(1-3), 151-167. doi:10.1163/016942410x503285Schulz, U., Munzert, P., & Kaiser, N. (2010). Plasma Surface Modification of PMMA for Optical Applications. Journal of Adhesion Science and Technology, 24(7), 1283-1289. doi:10.1163/016942409x12561252292026Silverstein, M. S., Breuer, O., & Dodiuk, H. (1994). Surface modification of UHMWPE fibers. Journal of Applied Polymer Science, 52(12), 1785-1795. doi:10.1002/app.1994.070521213Inagaki, N., Narushim, K., Tuchida, N., & Miyazaki, K. (2004). Surface characterization of plasma-modified poly(ethylene terephthalate) film surfaces. Journal of Polymer Science Part B: Polymer Physics, 42(20), 3727-3740. doi:10.1002/polb.20234Nakamatsu, J., Delgado-Aparicio, L. F., Da Silva, R., & Soberon, F. (1999). Ageing of plasma-treated poly(tetrafluoroethylene) surfaces. Journal of Adhesion Science and Technology, 13(7), 753-761. doi:10.1163/156856199x00983Yun, Y. I., Kim, K. S., Uhm, S.-J., Khatua, B. B., Cho, K., Kim, J. K., & Park, C. E. (2004). Aging behavior of oxygen plasma-treated polypropylene with different crystallinities. Journal of Adhesion Science and Technology, 18(11), 1279-1291. doi:10.1163/1568561041588200Morent, R., De Geyter, N., Leys, C., Gengembre, L., & Payen, E. (2007). Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surface and Coatings Technology, 201(18), 7847-7854. doi:10.1016/j.surfcoat.2007.03.018Zhao, B., & Kwon, H. J. (2011). Adhesion of Polymers in Paper Products from the Macroscopic to Molecular Level — An Overview. Journal of Adhesion Science and Technology, 25(6-7), 557-579. doi:10.1163/016942410x52582

    Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico)

    Get PDF
    The geomicrobiology of crater lake microbialites remains largely unknown despite their evolutionary interest due to their resemblance to some Archaean analogs in the dominance of in situ carbonate precipitation over accretion. Here, we studied the diversity of archaea, bacteria and protists in microbialites of the alkaline Lake Alchichica from both field samples collected along a depth gradient (0–14 m depth) and long-term-maintained laboratory aquaria. Using small subunit (SSU) rRNA gene libraries and fingerprinting methods, we detected a wide diversity of bacteria and protists contrasting with a minor fraction of archaea. Oxygenic photosynthesizers were dominated by cyanobacteria, green algae and diatoms. Cyanobacterial diversity varied with depth, Oscillatoriales dominating shallow and intermediate microbialites and Pleurocapsales the deepest samples. The early-branching Gloeobacterales represented significant proportions in aquaria microbialites. Anoxygenic photosynthesizers were also diverse, comprising members of Alphaproteobacteria and Chloroflexi. Although photosynthetic microorganisms dominated in biomass, heterotrophic lineages were more diverse. We detected members of up to 21 bacterial phyla or candidate divisions, including lineages possibly involved in microbialite formation, such as sulfate-reducing Deltaproteobacteria but also Firmicutes and very diverse taxa likely able to degrade complex polymeric substances, such as Planctomycetales, Bacteroidetes and Verrucomicrobia. Heterotrophic eukaryotes were dominated by Fungi (including members of the basal Rozellida or Cryptomycota), Choanoflagellida, Nucleariida, Amoebozoa, Alveolata and Stramenopiles. The diversity and relative abundance of many eukaryotic lineages suggest an unforeseen role for protists in microbialite ecology. Many lineages from lake microbialites were successfully maintained in aquaria. Interestingly, the diversity detected in aquarium microbialites was higher than in field samples, possibly due to more stable and favorable laboratory conditions. The maintenance of highly diverse natural microbialites in laboratory aquaria holds promise to study the role of different metabolisms in the formation of these structures under controlled conditions

    esults from a prospective observational study of men with premature ejaculation treated with dapoxetine or alternative care: the PAUSE study.

    No full text

    The Family Streptomycetaceae

    No full text
    The family Streptomycetaceae comprises the genera Streptomyces, Kitasatospora, and Streptacidiphilus that are very difficult to differentiate both with genotypic and phenotypic characteristics. A separate generic status for Kitasatospora and Streptacidiphilus is questionable. Members of the family can be characterized as non-acid-alcohol-fast actinomycetes that generate most often an extensively branched substrate mycelium that rarely fragments. At maturity, the aerial mycelium forms chains of few to many spores. A large variety of pigments is produced, responsible for the color of the substrate and aerial mycelium. The organisms are chemoorganotrophic with an oxidative type of metabolism and grow within different pH ranges. Streptomyces are notable for their complex developmental cycle and production of bioactive secondary metabolites, producing more than a third of commercially available antibiotics. Antibacterial, antifungal, antiparasitic, and immunosuppressant compounds have been identified as products of Streptomyces secondary metabolism. Streptomyces can be distinguished from other filamentous actinomycetes on the basis of morphological characteristics, in particular by vegetative mycelium, aerial mycelium, and arthrospores. The genus comprises at the time of writing more than 600 species with validated names. 16S rRNA gene sequence-based analysis for species delineation within the Streptomycetaceae is of limited value. The variations within the 16S rRNA genes—even in the variable regions—are too small to resolve problems of species differentiation and to establish a taxonomic structure within the genus. Comprehensive comparative studies including protein-coding gene sequences with higher phylogenetic resolution and genome-based studies are needed to clarify the species delineation within the Streptomycetaceae

    Studies on photodegradation process of psychotropic drugs: a review

    No full text
    corecore