4,026 research outputs found

    miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development

    Get PDF
    MicroRNAs play a crucial role in the regulation of cell growth and differentiation. Mice with genetic deletion of miR-375 exhibit impaired glycemic control due to decreased β-cell and increased α-cell mass and function. The relative importance of these processes for the overall phenotype of miR-375KO mice is unknown. Here, we show that mice overexpressing miR-375 exhibit normal β-cell mass and function. Selective re-expression of miR-375 in β-cells of miR-375KO mice normalizes both, α- and β-cell phenotypes as well as glucose metabolism. Using this model, we also analyzed the contribution of β-cells to the total plasma miR-375 levels. Only a small proportion (≈1 %) of circulating miR-375 originates from β-cells. Furthermore, acute and profound β-cell destruction is sufficient to detect elevations of miR-375 levels in the blood. These findings are supported by higher miR-375 levels in the circulation of type 1 diabetes (T1D) subjects but not mature onset diabetes of the young (MODY) and type 2 diabetes (T2D) patients. Together, our data support an essential role for miR-375 in the maintenance of β-cell mass and provide in vivo evidence for release of miRNAs from pancreatic β-cells. The small contribution of β-cells to total plasma miR-375 levels make this miRNA an unlikely biomarker for β-cell function but suggests a utility for the detection of acute β-cell death for autoimmune diabetes

    Decoy activity through microRNAs : the therapeutic implications

    Get PDF
    Introduction: microRNAs (miRNAs), small noncoding RNAs, are deregulated in several diseases including cancer. miRNAs regulate gene expression at a posttranscriptional level by binding to 5´UTR, coding regions or 3´UTR of messenger RNAs (mRNA), inhibiting mRNA translation or causing mRNA degradation. The same miRNA can have multiple mRNA targets, and the same mRNA can be regulated by various miRNAs. Areas covered: Recently, seminal contributions by several groups have implicated miRNAs as components of an RNA--RNA language that involves crosstalk between competing endogenous RNAs through a decoy mechanism. We review the studies that described miRNAs as players in a biological decoy activity. miRNAs can either be trapped by competing endogenous RNAs or interact with proteins that have binding sites for mRNAs. Expert opinion: The miRNA decoy functions have implications for the design of therapeutic approaches in human diseases, including specific ways to overcome resistance to drug therapy and future miRNA-based clinical trials design.M.I.A. is supported by a PhD fellowship (SFRH/BD/47031/2008) from Fundacão para a Ciência e Tecnologia, Portugal. Dr. Calin is The Alan M. Gewirtz Leukemia & Lymphoma Society Scholar. He is also supported as a Fellow at The University of Texas MD Anderson Research Trust, as a University of Texas System Regents Research Scholar, and by the CLL Global Research Foundation. Work in Dr. Calin’s laboratory is supported in part by an NIH/NCI grant (CA135444), a Department of Defense Breast Cancer Idea Award, Developmental Research Awards in Breast Cancer, Ovarian Cancer, Brain Cancer, Prostate Cancer, Multiple Myeloma, and Leukemia SPOREs, the Laura and John Arnold Foundation, the RGK Foundation and the Estate of C. G. Johnson, Jr. The authors disclose no conflicts of interests and no funding was received in preparation of this manuscript

    Sequencing PDX1 (insulin promoter factor 1) in 1788 UK individuals found 5% had a low frequency coding variant, but these variants are not associated with Type 2 diabetes

    Get PDF
    OnlineOpen Article. This is a copy of an article published in Diabetic Medicine. This journal is available online at: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1464-5491Genome-wide association studies have identified >30 common variants associated with Type 2 diabetes (>5% minor allele frequency). These variants have small effects on individual risk and do not account for a large proportion of the heritable component of the disease. Monogenic forms of diabetes are caused by mutations that occur in <1:2000 individuals and follow strict patterns of inheritance. In contrast, the role of low frequency genetic variants (minor allele frequency 0.1-5%) in Type 2 diabetes is not known. The aim of this study was to assess the role of low frequency PDX1 (also called IPF1) variants in Type 2 diabetes

    Pressure dependent electronic properties of MgO polymorphs: A first-principles study of Compton profiles and autocorrelation functions

    Full text link
    The first-principles periodic linear combination of atomic orbitals method within the framework of density functional theory implemented in the CRYSTAL06 code has been applied to explore effect of pressure on the Compton profiles and autocorrelation functions of MgO. Calculations are performed for the B1, B2, B3, B4, B8_1 and h-MgO polymorphs of MgO to compute lattice constants and bulk moduli. The isothermal enthalpy calculations predict that B4 to B8_1, h-MgO to B8_1, B3 to B2, B4 to B2 and h-MgO to B2 transitions take place at 2, 9, 37, 42 and 64 GPa respectively. The high pressure transitions B8_1 to B2 and B1 to B2 are found to occur at 340 and 410 GPa respectively. The pressure dependent changes are observed largely in the valence electrons Compton profiles whereas core profiles are almost independent of the pressure in all MgO polymorphs. Increase in pressure results in broadening of the valence Compton profiles. The principal maxima in the second derivative of Compton profiles shifts towards high momentum side in all structures. Reorganization of momentum density in the B1 to B2 structural phase transition is seen in the first and second derivatives before and after the transition pressure. Features of the autocorrelation functions shift towards lower r side with increment in pressure.Comment: 19 pages, 8 figures, accepted for publication in Journal of Materials Scienc

    Decreased STARD10 expression is associated with defective insulin secretion in humans and mice

    Get PDF
    Genetic variants near ARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsulin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established. Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter and chromatin conformational capture (3C) studies in β cell lines, we localize the causal variant(s) at this locus to a 5 kb region that overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly, β-cell-selective deletion of StarD10 in mice led to impaired glucose-stimulated Ca2+ dynamics and insulin secretion and recapitulated the pattern of improved proinsulin processing observed at the human GWAS signal. Conversely, overexpression of StarD10 in the adult β cell improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in β cells had no impact on insulin secretion or proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated with variation at this locus is mediated through reduction in STARD10 expression in the β cell

    Genetic Covariance Structure of Reading, Intelligence and Memory in Children

    Get PDF
    This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c
    corecore