1,410 research outputs found

    A versão Portuguesa do European Deprivation Index: Um Instrumento para o Estudo das Desigualdades em Saúde

    Get PDF
    Introduction: Tackling socioeconomic health inequalities is a big public health challenge and ecological deprivation indexes are essential instruments to monitor and understand them. In Portugal, no standard ecological deprivation index exists, contrasting with other countries. We aimed to describe the construction of the Portuguese version of a transnational deprivation index, European Deprivation Index. Material and Methods: The European Deprivation Index was developed under the Townsend theorization of deprivation. Using data from the European Union - Statistics on Income and Living Conditions Survey, we obtained an indicator of individual deprivation. This indicator became the gold-standard variable, based on what we selected the variables at aggregate level (census) to be included in the European Deprivation Index, a total of eight. The European Deprivation Index was produced for the smallest area unit possible (n = 16 094, mean/area = 643 inhabitants) and resulted from the weighted sum of the previous variables. It was then classified into quintiles. Results: The first quintile (least deprived) comprised 20.9% national population and the fifth quintile (most deprived) 18.0%. The European Deprivation Index showed a clear geographic pattern – most deprived areas concentrated in the South and in the inner North and Centre of the country, and the least deprived areas in the coastal areas of North and Centre and in the Algarve. Discussion: The development of the European Deprivation Index was grounded on a solid theoretical framework, individual and aggregate variables, and on a longitudinal Europe-wide survey allowing its replication over the time and in any European country. Conclusion: Hopefully, the European Deprivation Index will start being employed by those interested in better understand health inequalities not only in Portugal but across Europe.This work was supported by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia in the framework of project UID/BIM/04293/2013. AIR and MFP would also like to thank to FCT – Fundação para a Ciência e a Tecnologia for the grants PTDC/SAU-EPI/113424/2009 and SFRH/BD/82529/2011

    Electromagnetically Induced Transparency and Slow Light with Optomechanics

    Get PDF
    Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nano-fabrication techniques. To date, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to strong nonlinear effects such as Electromagnetically Induced Transparency (EIT) and parametric normal-mode splitting. In atomic systems, seminal experiments and proposals to slow and stop the propagation of light, and their applicability to modern optical networks, and future quantum networks, have thrust EIT to the forefront of experimental study during the last two decades. In a similar fashion, here we use the optomechanical nonlinearity to control the velocity of light via engineered photon-phonon interactions. Our results demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal device, fabricated by simply etching holes into a thin film of silicon (Si). At low temperature (8.7 K), we show an optically-tunable delay of 50 ns with near-unity optical transparency, and superluminal light with a 1.4 microseconds signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory, are also relevant to classical signal processing applications. Measurements at room temperature and in the analogous regime of Electromagnetically Induced Absorption (EIA) show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals.Comment: 15 pages, 9 figure

    Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey

    Full text link
    Although jawless vertebrates are apparently capable of adaptive immune responses, they have not been found to possess the recombinatorial antigen receptors shared by all jawed vertebrates. Our search for the phylogenetic roots of adaptive immunity in the lamprey has instead identified a new type of variable lymphocyte receptors (VLRs) composed of highly diverse leucine-rich repeats (LRR) sandwiched between amino- and carboxy-terminal LRRs. An invariant stalk region tethers the VLRs to the cell surface by means of a glycosyl-phosphatidyl-inositol anchor. To generate rearranged VLR genes of the diversity necessary for an anticipatory immune system, the single lamprey VLR locus contains a large bank of diverse LRR cassettes, available for insertion into an incomplete germline VLR gene. Individual lymphocytes express a uniquely rearranged VLR gene in monoallelic fashion. Different evolutionary strategies were thus used to generate highly diverse lymphocyte receptors through rearrangement of LRR modules in agnathans ( jawless fish) and of immunoglobulin gene segments in gnathostomes ( jawed vertebrates).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62870/1/nature02740.pd

    Body mass index, adiposity rebound and early feeding in a longitudinal cohort (Raine study)

    Get PDF
    Objective: This study examined the influence of type and duration of infant feeding on adiposity rebound and the tracking of body mass index (BMI) from birth to 14 years. Methods: A sample of 1330 individuals over eight follows-ups was drawn from the Western Australian Pregnancy Cohort (Raine) Study. Trajectories of BMI from birth to adolescence using linear mixed model (LMM) analysis investigated the influence of age breastfeeding stopped and age other milk introduced (binomial 4-month cut-point). A sub-sample of LMM predicted BMI was used to determine BMI and age at nadir for early infant feeding groups. Results: Chi square analysis between early feeding and weight status (normal weight, overweight and obese) groups found a significant difference between age breastfeeding stopped (p Conclusions: Early infant feeding was important in the timing and BMI at adiposity rebound. The relationship between infant feeding and BMI remained up to age 14 years. Although confounding factors cannot be excluded, these findings support the importance of exclusive breastfeeding for longer than four months as a protective behaviour against the development of adolescent obesity

    Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule

    Get PDF
    N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system

    Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.

    Get PDF
    New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved

    GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection

    Get PDF
    Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation–mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis

    Smart cities in a smart world

    Get PDF
    Very often the concept of smart city is strongly related to the flourishing of mobile applications, stressing the technological aspects and a top-down approach of high-tech centralized control systems capable of resolving all the urban issues, completely forgetting the essence of a city with its connected problems. The real challenge in future years will be a huge increase in the urban population and the changes this will produce in energy and resource consumption. It is fundamental to manage this phenomenon with clever approaches in order to guarantee a better management of resources and their sustainable access to present and future generations. This chapter develops some considerations on these aspects, trying to insert the technological issues within a framework closer to planning and with attention to the social impact

    Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes

    Get PDF
    The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users
    corecore